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Preface

This volume collects together 27 papers from the Tenth Goddard Conference on Mass Storage
Systems and Technologies being held in cooperation with the Nineteenth IEEE Symposium on Mass
Storage Systems and Technologies.

The Conference opens on the first day with tutorials on perpendicular recording in magnetic media,
IP storage, object-based storage, and storage virtualization. Over the following three days, there are
twelve sessions on various themes: Networked Storage, Hierarchical Storage Management, Storage
Indexing.  Instead of a poster session, the Program Committee decided this year to have a set of
shorter papers in the plenary sessions.  Time has been set aside for extemporaneous presentations to
provide an opportunity for those with a message who either did not write up a paper, or decided,
after looking at the program, that they had worthwhile ideas to share.

An invited panel on the third day will cast a look at the future of storage, and reflect also on the past.
Intense competition in the disk drive industry has led to mergers and a reduction in the number of
manufacturers.  The industry, however, has managed to maintain a rate of doubling the areal density
every year at least over the last two years.  Nanomagnetism and perpendicular recording are two
ways to push back the superparamagnetic limit.  The tape industry has not achieved the same areal
density as their brethren in the disk industry, but a cartridge holding a terabyte of data is now more
than just a possibility.

Networked storage (NAS, SAN) is now more prevalent in data centers, and WAN based IP storage
has been demonstrated.  An interoperability demonstration among different products from various
vendors is planned as part of the vendor expo.

Vendor exhibits will continue through the three days of the general sessions.

The Program Committee has worked diligently with the authors of the papers to assist the editors in
the production of this volume and we thank them for their efforts.

Ben Kobler
P C Hariharan
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Perpendicular Recording: A Future Technology or a Temporary 
Solution 

Dmitri Litvinov and Sakhrat Khizroev 
Seagate Research 

River Park Commons, Suite 550 
2403 Sidney Street 

Pittsburgh, PA 15203-2116 
Tel: +1-412-918-7028 
Fax: +1-412-918-7010 

Abstract 
During the vitally critical times to the future advances in data storage technologies, 
perpendicular magnetic recording [1,2,3] has attracted a substantial amount of attention 
as a prime alternative to the technologies in place today [4,5]. As envisioned by the 
industry and academia leaders, perpendicular recording is the most likely candidate for 
the technology implemented in the next generations of hard drives. The most competitive 
virtue of this technology is the fact that while being technically the closest alternative to 
conventional longitudinal recording, it is capable of extending the (superparamagnetic) 
density limit [6] beyond what is achievable with longitudinal recording. It is widely 
believed that perpendicular magnetic recording paradigm will enable to sustain the 
current great strides in technological advances for the next several generations of 
magnetic storage solutions. 

This paper will cover the basic principles underlying perpendicular recording as well as 
the challenges associated with implementing the technology [7,8,9,10]. 

1 Superparamagnetic limit and the need for a new technology 

S             N N            S N            SS           N S             NN            S

Inductive
“Ring” Writer

MR Reader
Magnetizing
Coil

Write field Recording Media  
Figure 1. A schematic of a conventional longitudinal recording scheme employed in 

today’s hard drives. 

The data on a magnetic recording medium is stored by means of recording a certain 
spatial variations of the magnetization, where the magnetization variations represent the 
data. The relation between the data and the magnetization pattern is defined by the 
encoding scheme used. Figure 1 shows a simplified schematic of a conventional 
longitudinal recording system. The recording media are engineered such that the 
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preferred direction of the magnetization, a so-called easy axis, lies in the plane of the 
recording layer. Using an inductive “ring”-type writer, the magnetization of the grains is 
aligned along the track in either positive or negative direction. The data is read back 
using a magnetoresistive element. A change or no change in the magnetization direction 
at the bit transitions corresponds to a 1 or to a 0, respectively. The lateral dimensions of a 
bit, i.e. the smallest feature realized in a particular drive design, defines the areal bit 
density that such a drive supports. 

A conventional magnetic medium has granular structure such that each bit consists of 
several magnetic grains or magnetic clusters. The magnetic clusters/grains are usually 
shaped irregularly and are randomly packed, as shown in Figure 2a.  Consequently, the 
recording bits and bit transitions are usually not perfect, which is illustrated in Figure 2b. 
These imperfections lead to noise in the playback signal. The noise is kept below a 
certain acceptable level by means of including a sufficiently large number of magnetic 
grains into each bit. The resulting averaging reduces the level of noise. As the areal 
density increases, the bit size and the size of the grains that constitute the bit, decreases. 
Typical grains in today’s media range from 5 to 15nm. 

Magnetic
grains

Bit transition
(a) (b)  

Figure 2. (a) A transmission electron micrograph of a typical granular medium; (b) a 
schematic of a single bit transition in a granular medium.  

One of the critical factors characterizing the reliability of a data storage device is data 
stability. Various parameters control the stability of the data against the external factors. 
With respect to the external temperature, which is manifested by thermal fluctuations in 
the recording media, the magnetic anisotropy energy stored in each magnetic grain is one 
of the major determinants (assuming that the grains are magnetically independent). The 
magnetic anisotropy energy approximately defines the amount of energy necessary to 
reverse the direction of the magnetization of a grain. For a single grain, it is equal to 
KUV, where KU is the magnetic anisotropy energy per unit volume and V is the volume 
of the grain. For a medium to be thermally stable, the above quantity KUV should be 
substantially greater (30-40 times) than the energy of a single quantum of thermal 
fluctuation, kBT, where kB is Boltzman’s constant and T is the temperature [6]. As 
mentioned above, the higher areal densities require smaller grain sizes. It follows that to 
sustain thermal stability, KU of a magnetic medium material should increase with the 
grain size decreases. Unfortunately, as KU increases, so does the write field necessary to 
efficiently write onto the medium. In conventional longitudinal recording, the upper limit 
of the write field that a recording head can generate is equal to 2πMS where MS is the 
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saturation magnetization moment of the head material. The highest value of 4πMS of the 
materials available today is rapidly approaching what is believed to be a fundamental 
limit of ~25kGauss. This defines the upper limit of the KU values that can be employed in 
a longitudinal medium and, consequently, the maximum areal density achievable with 
conventional longitudinal recording. It has been predicted that with the materials 
available today, the highest areal density achievable with conventional longitudinal 
recording is ~100Gbit/in2 [5,6]. 

2 Dodging the superparamagnetic limit … The advantages of perpendicular 
recording? 

Several aspects native to perpendicular recording make it superior to longitudinal 
recording with respect to the superparamagnetic limit. Among the advantages are higher 
write-field amplitude and sharper write-field gradients, thicker recording layers, absence 
of demagnetizing field at bit transitions, higher playback amplitude, etc. The specific 
nature of these advantages is discussed in detail below. 

2.1 Higher write field with sharper side and trailing gradients 
Figure 3 shows a comparative schematic of conventional longitudinal and perpendicular 
recording schemes. While in longitudinal recording, the natural direction of the 
magnetization, the easy axis, lies in the plane of a recording medium, in perpendicular 
recording, the easy axis is perpendicular to the plane of a medium. In longitudinal 
recording, the recording is performed by the fringing fields emanating from the gap 
region between the write-poles of a conventional “ring”-type recording head. It is the 
geometry of a longitudinal ring-head that defines the upper limit of the write field of 
2πMS, where MS is the saturation magnetization of the write-pole material. In 
perpendicular recording, write field is generated between the trailing pole of a single pole 
head and a soft underlayer (SUL), a soft magnetic material located below the recording 
layer. In such geometry, the upper limit of the write field is equal to 4πMS, which is two 
times higher than the highest field achievable with a longitudinal ring head. 

SUL

Transition

 Written
 moment
 in media

Coil

“Gap” field

Record.
layer

Yoke Trailing edge

Coil Yoke

Fringing
fields

Recording
medium

Transition
Written moment
 in media  

   (a)     (b) 

Figure 3. Diagram showing a side cross-section of (a) a typical perpendicular system 
including a SPH and a double-layer medium with a SUL and (b) a longitudinal system, 

including a ring-head and a single-layer recording medium. 
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Higher write efficiency of a perpendicular single-pole recording head in combination 
with a SUL can ba explained in greater detail as illustrated in Figure 4. It can be shown 
(the proof of this concept is beyond the scope of this paper [9]) that to evaluate the 
magnetic fields above the SUL boundary, the SUL can be thought of as a perfect 
magnetic mirror such that the magnetic field above the SUL boudnary is a superposition 
of the fields generated by both the magnetic elements above the SUL boundary and by 
their images located below the SUL boundary. This concept is illustrated in Figure 4, 
where the SUL is replaced with an image recording head. From this picture it is clear that 
in perpendicular recording the write process effectively occurs in the gap between the 
magnetic poles, the real and the image poles, which is in contrast to longitudinal 
recording where the writing is done by the frinding fields as outlined above. From simple 
superposition arguments, it is straighforward to show that the in-gap field is equal to 
4πMS while the highest value of the fringing field is equal to 2πMS. 

“Gap” fields

Real head

Image head

Coil

SUL
boundary

Physical Gap Effective Gap

 

Figure 4 A schematic of the magnetic imaging principle in perpendicular recording using 
a medium with a soft underlayer. 

As shown above, the maximum write field available in perpendicular recording is two 
times higher than the maximum write available in longitudinal recording. The direct 
consequence is the ability to write onto a higher anisotropy media (higher KU). The use of 
higher anisotropy media materials allows higher areal densities without compromising 
the thermal stability of the recording data. 

The spatial profile of the write field is also more beneficial for achieving higher areal 
density in perpendicular recording. The side gradients, i.e. the rate at which the field rolls 
off at the side edges of a recording head, are usually substantially sharper than what one 
observes in longitudinal recording. This property leads to better-defined tracks with a 
very narrow erase band. Along with better magnetic alignment of the media (see below), 
extremely narrow tracks are possible to achieve. 
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   (a)      (b) 

Figure 5. Longitudinal head field contours and perpendicular head field contours from (a) 
a longitudinal head with a 150 nm gap and (b) a perpendicular pole head with a pole 

thickness of 700 nm.  The trackwidth is 50 nm in both cases. 

The single pole perpendicular write heads used to acquire the experimental data presented 
in this paper, were made by focused ion-beam (FIB) modification of conventional 
longitudinal writers [11]. It should be emphasized that the main difference in the design 
of conventional perpendicular and longitudinal writers is the length of the gap between 
the magnetic write-poles. In terms of the write process, while in longitudinal recording 
the writing is done near the gap region, in perpendicular recording, the writing is done by 
the trailing edge of the trailing pole [12]. Figure 6 shows a state-of-the-art perpendicular 
recording head manufactured by FIB trimming of a conventional longitudinal write head 
by increasing the gap length and trimming the trailing pole and the reader to the specified 
dimensions. Both the trailing pole and the reader are designed for a 60nm track width. 

FIBed Reader

FIBed Writer

 

Figure 6. A single pole perpendicular write head made by focused ion-beam etching of a 
conventional longitudinal ring head. The trailing pole width is 60nm. 

2.2 Well aligned media 
In conventional longitudinal recording, the easy axes of individual grains are randomly 
oriented in the plane of a medium. (It should be recalled that the easy axis is the 
energetically favorable axis/direction along which the magnetization of a grain is aligned 
in the absence of external magnetic fields.) Thus, in longitudinal recording, a large 
fraction of the grains forming a bit has their easy axes severely misaligned with the bit 
magnetization direction. Writing well-defined bit transitions on such randomly oriented 
media imposes stringent requirements onto the spatial profile of a write-field. If one 
neglects the imperfections of a bit transition due to the granular nature of a medium, the 
quality of the bit transition is defined mainly by the write-field profile. 
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This is drastically different from perpendicular recording, in which the easy axis of each 
magnetic grain is relatively well aligned in the direction perpendicular to the plain of the 
medium. Thus, in a perpendicular recording, the magnetization direction of a recorded bit 
always coincides with the orientation of the easy axes of individual grains that form the 
bit. Well-defined easy axis orientation relaxes the stringent requirements for the trailing 
and side write-field gradients necessary to achieve sharp transitions, thus enabling the use 
of thicker media [10]. 

The intrinsically better alignment of perpendicular media helps record narrow tracks with 
well-defined transitions even into a relatively thick recording layer. A MFM image of 
two adjacent tracks with a 65 nm trackpitch written into a 50 nm thick CoCr recording 
layer using a 60 nm wide single pole head is shown in Figure 7 [7]. This is equivalent to a 
track density of ~400ktpi. It should be stressed that the state-of-the-art in longitudinal 
recording for the track density is ~100ktpi. 

The possibility of using thicker recording layers further assists with improving thermal 
stability. 

 

Figure 7. A MFM image of two tracks with a 65 nm trackpitch. 

With respect to using well-aligned media, it should be remembered that previously it was 
shown that, although well-aligned perpendicular media might have a relatively small 
average angle between the magnetization and the perpendicular recording field, the 
torque created is still sufficiently large to quickly switch the magnetization [13, 14]. 

2.3 Absence of demagnetizing fields at bit transitions 
One of the major destabilizing factors in longitudinal recording medium is strong 
demagnetizing field at the bit transition. The destabilizing influence of the demagnetizing 
field at the bit transitions is easy to see if one notices that the two adjacent bits of 
opposing magnetization directions repel in a similar way as two bar magnets with the 
poles of the same polarity, such as north-north or south-south, facing each other. The 
magnets would try to flip such that the poles of opposite polarities are next to each other. 
This is illustrated below in Figure 8. 
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Figure 8. A schematic of the influence of demagnetizing fields in longitudinal and 
perpendicular media. 

The calculated demagnetizing fields for the cases of longitudinal and perpendicular 
media for a single bit-transition are shown in Figure 9. In the longitudinal recording, high 
demagnetizing fields at bit-transitions destabilize individual grains leading to a finite 
transition width. This is opposite to perpendicular recording, in which the demagnetizing 
fields reach their minima at the bit-transitions, thus promoting ultra-narrow transitions 
and, consequently, high-density recording.  

It can also be noticed that, unlike in longitudinal recording, the demagnetization fields in 
perpendicular recording decrease as the thickness increases, thus promoting thicker 
recording layers, which in turn is beneficial for the thermal stability. In this respect, it is 
common to notice that although perpendicular recording promotes high densities, the 
stronger influence of the demagnetization fields at lower densities is a disadvantage of 
perpendicular recording. 

-0.04 -0.02 0.00 0.02 0.04

-2000

-1000

0

1000

2000

H
z (

O
e)

Distance down the track (um)

 T = 10 nm
 T = 20 nm

-0.04 -0.02 0.00 0.02 0.04

-2000

-1000

0

1000

2000

H
x (

O
e)

Distance along the track (um)

 T = 10 nm
 T = 20 nm

 
   (a)        (b) 

Figure 9. The demagnetization field versus the distance down the track along the central 
planes of 10 nm and 20 nm thick recording layers for (a) perpendicular and (b) 

longitudinal recording media.  

3 A new system component: soft underlayer challenges and design considerations 
One of the key aspects of perpendicular recording that makes it superior to the 
longitudinal recording with respect to superparamagnetic effects is utilization of media 
with a SUL. A single-pole head and a medium with a SUL perpendicular recording 
system enables write fields in excess of 80% of 4πMS of the pole head/SUL material. 
This doubles the fields available in longitudinal recording, thus opening the possibility to 
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write on substantially higher anisotropy media and leading to better thermal stability. 
Acting as a magnetic mirror, SUL effectively doubles the recording layer thickness, 
facilitating substantially stronger readout signals. Also, the effective thickness increase 
due to the mirroring effects by a SUL leads to the reduction of the demagnetizing fields 
with a potential to further improve thermal stability. 

While the utilization of perpendicular media with a SUL should make it possible to 
postpone the superparamagnetic limit, the SUL introduces a number of technical 
challenges. Some of the issues related to the presence of the SUL are discussed below. 

3.1 SUL as a major source of noise 
Among the technical challenges introduced by the presence of a SUL is the fact that a not 
properly optimized SUL material can introduce a significant amount of noise into the 
playback signal. The noise results from the stray field generated by the effective charges 
resulting from domain walls in the SUL as illustrated in Figure 10.  

Domain wall
(source of “magnetic charges”)

Fields from Wall (Source of Noise)

M
r

M
r

 

Figure 10. A schematic of the stray fields generated by a SUL 

Magnetic biasing of the SUL, i.e. forcing the SUL into a single magnetic domain state, 
allows to minimize the SUL noise. The biasing can be achieved either by application of 
an external magnetic field or by engineering a SUL material with a built-in biasing field. 
Figure 11 shows a schematic of the experimental setup to study the effect of magnetic 
biasing of the SUL on the noise. The magnetic biasing was achieved using two NdFeB 
permanent magnets placed in the vicinity of the media. The placement of the magnets 
was such that it allowed achieving complete saturation of the SUL underneath the reader. 
Special care was necessary to arrange the magnets sufficiently far from the recording 
head ~2cm away in order not to affect the properties of the read element.   

Soft underlayer
Hard layer

+++
-----

-----
+++

Magnets

head

 

Figure 11. A schematic of experimental setup to magnetically bias SUL film. 
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Figure 12 shows the playback signals from the two media with as deposited non-biased 
(a) and  magnetically biased (b) SUL’s. A substantial level of noise attributed to presence 
of a large number of domain walls (confirmed by magnetic force microscopy) in the SUL 
can be seen in Figure 12a.  A drastic reduction of the noise (by at least 10dB) is clearly 
observed in Figure 12b where the SUL is magnetically biased. 

 
   (a)      (b) 

Figure 12. Playback signal from two media with different SUL’s. (a) SUL with a large 
number of stripe domains. The presence of stripe domains was confirmed using magnetic 
force microscopy. (b) Biased SUL with domain walls swept out from the SUL material. 

The magnetic biasing saturates SUL film forcing it into a pseudo-single domain state 
effectively sweeping the domain walls out of the SUL material. This results in 
elimination of the SUL noise. 

3.2 SUL magnetic moment 
To properly design a perpendicular recording system that utilizes a medium with a SUL, 
it is critical to choose an appropriate SUL material. As illustrated in Figure 13, if the 
magnetic moment of a SUL material is lower than the magnetic moment of the recording 
pole tip, saturation of the SUL underneath the pole tip can occur. 

Pole
tip

                   Soft underlayer

Saturated
region

H

Pole
tip

                    Soft underlayer

H

SUL 4πMS < Head 4πMS
(saturated region under the pole tip

deteriorates gradients)

SUL 4πMS > Head 4πMS
(not saturated under the pole tip)

 

Figure 13. A schematic illustrating the saturation effect in the SUL is the magnetic 
moment of a SUL is lower than the magnetic moment of the write pole tip. 
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The results of boundary element modeling for two different head/SUL combinations are 
presented in Figure 14. It can be noticed that it is possible to generate strong recording 
fields with the magnitude approaching 4πMS of the pole tip even if the SUL has a lower 
magnetic moment than the pole tip. However, saturation of the SUL will lead to a 
substantial deterioration of the trailing field gradients. The trailing gradients in the case of 
the Permalloy based SUL are substantially worse than the trailing gradients in the case 
when a FeAlN based SUL is used.  
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Figure 14. Trailing fields from a single pole perpendicular write head made out of FeAlN 
(4πMS =20kG) for FeAlN and Permalloy (4πMS =10kG) SUL’s. 

It follows that if high moment materials are used for write heads, e.g. CoFeB, FeAlN, 
etc., the moment of the SUL material should match or exceed the moment of the pole tip 
material. 

3.3 SUL thickness 
Another important issue related to the optimized design of a SUL is the SUL thickness. 
Using simple considerations of magnetic flux conservation, the minimum thickness 
required for the SUL to function properly is given by 

 tippole
layersoft under S

 tip poleS
layersoft under 2

1 w
M

M
t ≥ , 

where the wpole tip is the width of the write pole tip, i.e. the dimension of the write pole tip 
defining the track width. The evaluation of the above equation for the case of 100Gbit/in2 
areal density and 4:1 bit aspect ratio, i.e. a 160nm wide pole tip, and the same pole tip 
and SUL materials, gives the lower boundary on the SUL thickness of 80nm. It should be 
stressed that this thickness is substantially smaller than the minimum required thickness 
often quoted in the literature of hundreds of nanometers to several microns.  

This important observation needs to be strongly emphasized. Due to materials properties, 
the mentioned above problem of SUL noise becomes increasingly aggravated with the 
increasing thickness of the SUL. 
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3.4 SUL influence on the resolution of a perpendicular recording system 
An additional challenge that the presence of a SUL imposes is potential deterioration of 
the system resolution. During reading from a medium with a SUL, due to the magnetic 
imaging properties of the SUL, the resolution can get distorted if the separation between 
the ABS and the SUL (sum of the recording layer thickness and the flying height) is 
comparable to the reader thickness. 

This phenomenon is clearly illustrated in the calculated [15] PW50 and the playback 
signal versus the underlayer to the ABS distance, shown in Figure 15. PW50 is the 
physical width of a single transition, the measure of the spatial resolution of a recording 
system. In these calculations, a fixed recording layer thickness of 10 nm was assumed, 
and spacing between the bottom side of the recording layer and the underlayer was varied 
from zero to some finite values. For comparison, the dotted straight lines indicate the 
values for the case when there is no underlayer. It can be clearly seen that the resolution 
of the modeled recording system substantially deteriorates at certain values of the ABS-
to-SUL spacing. This suggests that a special care has to be taken to properly optimize the 
system’s resolution.  
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Figure 15. PW50 and the normalized playback vs. the ABS to underlayer spacing. 30 nm 
GMR element and a 70 nm shield-to-shield spacing are assumed. 

Although, in a properly designed system this resolution distortion can be almost 
completely eliminated, it causes the resolution of a typical read head in a system with an 
underlayer to be at most as good as the resolution of an equivalent head in a system 
without an underlayer. It should be noted, however, the underlayer definitely increases 
the playback signal, which is desirable at high areal densities. 

4 Playback: new  signal processing schemes 

One of the drastic differences between perpendicular and longitudinal recording is the 
difference in playback signals. To help understand the basic difference in the playback 
process between longitudinal and perpendicular recording, schematic diagrams of the 
stray fields emanating from a longitudinal medium and perpendicular media without and 
with a SUL are shown in Figure 16, respectively. As can be noticed, in the longitudinal 
case, the stray fields emanate only from the transitions, with the fields near the transitions 
oriented perpendicular to the disk plane. On the contrary, in the perpendicular cases, the 
stray field emanates from the effective magnetic “charges” at the top and effective (due to 
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a SUL) bottom surfaces of the recording layer, with the field near the transitions oriented 
parallel to the disk plane. 

+
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Figure 16. Diagrams showing the sources of stray fields in the case of (a) longitudinal 
recording, and (b) perpendicular recording. 

As a result of the different magnetic “charge” distributions, the playback waveform differ 
drastically between longitudinal and perpendicular recording schemes. It is illustrated in 
Figure 17 where typical low-density playback waveforms are shown for both 
perpendicular and longitudinal recording. 
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Figure 17. Typical playback waveforms for perpendicular and longitudinal recording 
schemes. 

The shown above waveforms for perpendicular and longitudinal recording schemes 
outline major difference between perpendicular and longitudinal recording. While in 
longitudinal recording the signal is present only at bit transitions, in perpendicular 
recording the signal is read not only from a bit transition but also from across the whole 
bit area. It is possible to differentiate the perpendicular playback signal to make it similar 
to the playback signal in longitudinal recording. However, it should be remembered that 
differentiate perpendicular playback is only similar but not identical to longitudinal 
playback. The difference arises in the absence of a transition when a longitudinal  
playback signal is equal to zero while a differentiated perpendicular playback is, although 
relatively small in amplitude, but is still finite.  
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It should be stressed that while not entirely suited to be processed by conventional 
longitudinal channels, perpendicular playback clearly contain more information than 
typical longitudinal waveforms, in which the signal arrives only from transitions. This 
property could potentially be used to advantage in future channel designs. 

5 New materials challenges 
While the requirements for the head materials used in perpendicular recording are similar 
to the head materials used in longitudinal recording, the major differences exist with 
respect to media materials. A typical perpendicular medium consists of two magnetically 
active layers: a hard layer and a SUL (See Figure 18). A hard layer in a perpendicular 
medium has rather different magnetic properties from a hard layer utilized in 
conventional longitudinal recording. It should also be noted that there is no analog to a 
SUL in longitudinal recording. The requirements for these two layers are outlined below.  

Overcoat

Hard Layer
Buffer/Spacer layer

Soft Underlayer

Substrate
 

Figure 18. A schematics of a typical perpendicular medium. 

5.1 Hard layer materials 
The primary approach to the design of a perpendicular recording layer is in many ways 
similar to the design of a conventional longitudinal recording layer. All the media in use 
today has granular structure, i.e. made of polycrystalline materials. Major goals inherent 
to both longitudinal and perpendicular recording layer development are small grain size, 
small grain size distribution, texture control, optimization of the inter-granular exchange 
de-coupling, etc. 

A large variety of today's perpendicular magnetic recording layer types can be clearly 
divided into the two major categories: 1) Alloy based media, such as CoCr-alloys[16, 17], 
and 2) media based on magnetic multilayers, such as Co/Pt, Co/Pd or others[18, 19]. 
Figure 19 contrasts the major difference between alloy and multilayer media. In alloy 
media, the magnetic anisotropy is controlled by magnetic crystalline anisotropy. The 
alloy media are usually highly textured to insure well-defined magnetic easy axis [20]. In 
magnetic multilayers, the magnetic anisotropy is controlled by interfacial effects between 
a magnetic layer, such as Co, and a highly polarizable spacer layer, such as Palladium or 
Platinum. In contrast to alloy media, this set of materials as used in perpendicular media 
usually possesses a very weak texture. 
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Figure 19. A schematic representation of major microstructural differences 

Material-wise, perpendicular CoCr-based alloy recording layers are similar to 
conventional longitudinal CoCr-based media, with the major difference being the 
orientation of the magnetic easy axis. Therefore, a significant amount of information 
accumulated in the course of the longitudinal media development can be used to control 
the critical parameters such as the grain size and the inter-granular exchange coupling. At 
the same time, CoCr-based perpendicular media have some open issues. For example, it 
is not clear yet if it is possible to make a CoCr-based medium with sufficiently high 
anisotropy to avoid superparamagnetic instabilities at ultra-high areal densities. It also 
has proven to be difficult to make CoCr-alloy based perpendicular recording layers with a 
remanent squareness of 1. The remanent squareness is defined as a ratio between the 
remanent magnetization, the value of magnetization on a M-H loop at H=0, and the 
saturation magnetization, the maximum value of magnetization. It is believed that a 
remanent squareness of 1 is necessary for low-density bit pattern stability. Also, a 
remanent squareness of less than 1 can lead to substantial amounts of DC noise. Various 
magnetic alloys such as L10 phases of FePt, CoPt, etc. are being studied as higher 
anisotropy alternatives for the recording layer.  

The magnetic multilayer based recording layers typically have significantly larger 
anisotropy energies (Coercive fields of above 15 kOe have been reported.) and are thus 
promising to be extendable to significantly higher recording densities. Another advantage 
of the magnetic multilayers is the fact that typically these materials have a remanent 
squareness of 1.  

To compare basic magnetic properties of CoCr-alloy and mutlilayer based recording 
layers, typical M-H loops by a Kerr magnetometer for a 50 nm thick perpendicular CoCr 
thin-film and a 52 nm thick Co/Pd structure (a stack of 40 sets of adjacent 3 and 10 
Angstrom thick layers of Co and Pd, respectively) are shown in Figure 20a and b, 
respectively. It can be noticed that in addition to the remanent squareness of 1,  the Co/Pd 
structure exhibits nucleation fields in excess of 3kOe, a useful characteristic to avoid data 
self-erasure due to stray fields. Meanwhile, the CoCr material shown in Figure 20a has a 
squareness of 0.75. The CoCr and Co/Pd recording layers have coercive fields and 
magnetizations of approximately 3 kOe and 9 kOe and 300 emu/cc and 200 emu/cc, 
respectively.  
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Figure 20. An M-H loop of a 50nm thick (a) CoCr-alloy layer and (b) Co/Pd multilayer. 

The direct consequence of remanent squareness less than 1 is shown in Figure 21, which 
compares the spectral SNR distributions for the two media types. The CoCr medium 
exhibits a significant amount of noise at lower linear densities. This is mainly due to the 
fact that the dominant contribution to the noise at low linear density in the CoCr-based 
medium comes from the DC noise which results from the relatively low value of 
remanent squareness, as described below in more detail. 

 

Figure 21. SNR versus the linear density for a CoCr-alloy (hollow circles) and a Co/Pd 
multilayer (hollow squares). 

5.2 High anisotropy SUL materials 

Several design guidelines for SUL’s were discussed above including thickness 
requirement and magnetic moment requirement. An additional parameter, which is 
critical to achieve optimized performance of a SUL in a perpendicular recording system, 
is magnetic anisotropy of the SUL material. The dynamic properties [21, 22] and 
influence of a SUL on system’s resolution [23] are affected by the value of the anisotropy 
field. The latter is illustrated in Figure 22, where the playback versus the linear density 
(roll-off) curves are shown for identical perpendicular recording systems with different 
SUL materials. The explanation of the quantum-mechanical nature of this effect is 
beyond the scope of this paper. However, it should be mentioned that the deterioration of 
the system’s resolution arises from inability of lower anisotropy SUL materials to 
perfectly respond to spatially-fast varying magnetization patterns in the recording layer. 
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Figure 22. Playback roll-off curves for perpendicular recording media with identical 
recording layer but different SUL’s. The extent of the roll-off curves to higher linear 
densities for higher anisotropy SUL indicates the advantage of using high anisotropy 

SUL materials. 

6 How far perpendicular recording will take us and what will come next? 
It should be emphasized that although perpendicular recording allows to surpass the 
superparamagnetic limit of longitudinal recording, there exists a superparamagnetic limit 
native to perpendicular recording as well. A number of factors such as the availability of 
higher write fields, possibility of using thicker well-aligned media, and the absence of 
demagnetizing fields at bit transitions aid in promoting thermally stable media to 
substantially higher areal densities. However, it has been shown that with all factors 
taken into account, the maximum areal density achievable with perpendicular recording 
scheme in development today is 500-1000 Gbit/in2 [5,24,25]. Once the perpendicular 
magnetic recording reaches its superparamagnetic limit, a new wave of technological 
innovations will have to take place.  

As mentioned in the beginning of this text, the foremost fundamental reason for the 
existence of the superparamagnetic limit is the head materials constraint imposing the 
limitation on the available head field that limits the utilization of higher anisotropy 
media. Among the potential successors of perpendicular recording is heat-assisted 
magnetic recording (HAMR) [26], in which the anisotropy of a recording medium is 
temporarily reduced during the write process. In HAMR schemes, an additional element 
to be incorporated in the design of a recording system is a source of heat (envisioned as 
an ultra-small light source) to locally increase the temperature of the recording medium. 
The increase of the medium temperature leads to the decrease of the medium coercivity 
enabling the writing with relatively small magnetic fields. 

Additionally, patterned media can be utilized to further extend the limits of magnetic 
recording [26]. In a patterned medium, the location and the size of the magnetic features 
are pre-determined by the medium manufacturing process. Elimination of the element of 
randomness characteristic to today’s polycrystalline recording media is a clear advantage 
of the patterned medium approach. However, for such a medium to become a serious 
contender to replace conventional alloy or multilayer media, an economically viable 
manufacturing process will have to be developed [27,28]. 



17 

It should be emphasized that due to the advantageous nature of perpendicular recording 
in promoting extremely high areal bit densities (high write field amplitude, well aligned 
medium, sharp field gradients, absence of demagnetizing field at transitions, etc.), the 
future technologies such as mentioned above HAMR and recording on a patterned 
medium, are likely to be developed as extensions of perpendicular magnetic recording 
schemes [26] rather than to be based on conventional longitudinal recording. 
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Abstract 
Ever since online digital storage devices were first introduced in the late 1950’s and early 
1960’s, the various functions key to storing data on these devices have been slowly 
migrating into the devices themselves. Early disk drives would send analog signals from 
the read/write head to a physically separate box that would deserialize and frame data 
into bytes. This data would then be sent to other processors to perform redundancy 
checks and data transmission to the requesting computer system. As engineers were able 
to fit more functionality into smaller spaces at reasonable costs, these key functions were 
migrated into the disk drive itself to the point where we now have an entirely self-
contained unit complete with all the electronics that used to fill a small room.  
 
However, even with the integrated advanced electronics, processors, and buffer caches, 
these disk drives are still relatively “dumb” devices. They essentially perform only two 
functions: read data and write data. Furthermore, the disk drives do not know anything 
about the data that they are storing. Things such as content, structure, relationships, 
quality of service, …etc. are all pieces of information that are external to the disk drive 
itself. The basic premise of Object Storage Devices is that the disk drive or, more 
generically, the storage device, can be a far more useful device if it had more information 
about the data it manages and was able to act on it. 
 
This paper is intended to provide the reader with an overview of OSD, its history, its 
current state, and possible futures. It begins by presenting a brief history of Object 
Storage Devices and then discusses why OSD is an important step in the evolution of 
storage technologies in general. The basic OSD architecture is compared with current 
Direct Attached Storage (DAS), Storage Area Network (SAN), and Network Attached 
Storage (NAS) architectures in terms of management, device and data sharing, 
performance, scalability, and device functionality. Finally, the current status of OSD and 
related roadmaps are presented as a frame of reference. 

Brief History of OSD 
The most active work on OSD has been done at the Parallel Data Lab at Carnegie Mellon 
University (www.pdl.cmu.edu) originally under the direction of Garth Gibson [1,4,5,6,8]. 
This work focused on developing the underlying concepts of OSD and two closely 
related areas called Network Attached Secure Disks (NASD) and Active Disks. Other 
work has been done at the University of California at Berkeley [Keeton], the Universities 
of California Santa Barbara and Maryland [3], as well as Hewlett Packard Labs [7,9], 
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Seagate Technology, and Intel Labs. Topics covered by these early pioneers can be 
broken down into two main categories: OSD architecture and applied OSD concepts. The 
basic OSD architecture defined to date specifies a set of object functions that can be 
implemented over any transport (TCP/IP, SCSI, VI, …etc.) but the initial transport will 
be SCSI for the sake of ubiquity.  

Motivation behind OSD 
As disk drives and other types of storage devices become denser and more numerous the 
block-level methods used to access and manage them are reaching the limits of their 
scalability. OSD is a protocol that defines higher-level methods of communicating the 
creation, writing, reading, and deleting of data objects as well as other related functions 
for getting and setting object attributes. OSD is a level higher than a block-level access 
method but one level below a file-level access method. OSD is not intended to replace 
either block-level or file-level access methods but rather to add a needed layer of 
abstraction that sits between them. It is a technology intended to help make existing and 
future data storage protocols more effective in several areas that include: 
 

• Storage Management 
• Security 
• Device and Data Sharing 
• Storage Performance 
• Scalability 
• Device Functionality 

 
These areas are becoming more critical to the success of storage users as well as the 
storage vendors who are increasingly concerned over ways to differentiate their products. 
It is quite possible that the OSD architecture will provide both the users and vendors with 
a highly flexible base on which to build new storage systems that can accommodate each 
of these areas more effectively than trying to extend the current block-based or file-based 
protocols. 

DAS/SAN/NAS Basic Architectures 
There are three basic storage architectures commonly in use today. These are Direct 
Attach Storage (DAS), Storage Area Networks (SAN), and Network Attached Storage 
(NAS). Each of these is used to solve problems specific to a particular application or 
installation. Each has its strengths and weaknesses.  
 
 DAS SAN NAS 
Storage Management High/low High Medium 
Security High Medium Low 
Device and Data Sharing Low Medium High 
Storage Performance High High Low 
Scalability Low Medium Medium 
Device Functionality Low Low Medium 

Table 1. Capability assessment based on Technology 
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The DAS/SAN/NAS architectures and how they scale from a single subsystem to 
multiple systems are described in diagrams 1-3.  Diagrams 4 and 5 show the basic 
architecture for OSD and the scaling thereof. 
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Diagram 1. A single DAS scaling to multiple DAS systems. Each DAS system 
could conceivably add more storage devices but this is intended to show that 
when the limit of storage device connectivity is reached on a DAS system, the 
DAS system must be replicated. 
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Diagram 2. A single NAS scaling to multiple NAS and multiple application 
(clients). Note that the NAS boxes themselves can increase in capacity and that 
they scale in number independently from the application systems (clients). 
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Diagram 3. A single SAN scaling to a larger SAN. Note that the storage devices 
and application (client) systems scale independently. There is implied device 
sharing and data sharing in this diagram. 
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Diagram 4. A basic OSD architecture. Unlike DAS/SAN/NAS the Object 
Manager is a separate entity from the OSD and the application system (client). 
The transport for OSD can be either a LAN or a SAN. 
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Diagram 5. Scaling a basic OSD architecture allows for increasing the number 
of OSD indefinitely as well as the application systems (clients). The Object 
manager can scale from a single system into a fully distributed cluster to 
accommodate the OSD and application system scaling. The transport for all 
these components can be either a LAN or SAN. 

 

Basic OSD Architecture 
One of the many motivations behind OSD was to take the strengths of each of the 
DAS/SAN/NAS architectures and incorporate them into a single framework. The basic 
OSD architecture and its scalability are shown in diagrams 4 and 5. There are many 
similarities between and OSD architecture and the DAS/SAN/NAS architectures. These 
include the use of Fibre Channel, Ethernet, TCP/IP, and SCSI protocols as transports and 
protocols. There are also several significant differences between OSD and the 
DAS/SAN/NAS architectures. These differences include the use of the following logical 
components: 

• Object Manager 
• OSD Intelligence 
• File Manager 

 
The Object Manager is used as a global resource to find the location of objects, mitigate 
secure access to these objects, and to assist in basic OSD management functions. This can 
be a single OSD that assumes these functions or it can be a completely separate, fully 
redundant cluster of systems. An Object Management Cluster would allow for scalability 
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in the number of objects that can be managed as well as the access performance of the 
Object Manager itself. It is important to note that the Object manager does not contain 
any user data or object meta-data nor does any of the data during a data transfer operation 
move through the Object Manager. The Object Manager is strictly used to facilitate 
location and secure access of objects.  
 
The OSD Intelligence is the software (firmware) that runs on the storage device. It is 
responsible for interpreting the various OSD methods (commands): Create Object, Delete 
Object, Read Object, Write Object, and Get/Set Attributes. Furthermore, the OSD 
Intelligence can also provide the following capabilities: 

• Object attribute interpretation 
o Object structure and relationship awareness 
o Object content awareness 
o Quality of Service (QoS) 
o Access Patterns 
o Security  

• Sense of time 
• Awareness and ability to communicate with other OSDs 
• Device and data management  

 
The OSD intelligence facilitates the communication of the OSD to the Object Manager 
for security purposes but mainly manages data processing and transfers between itself 
and the File Manager on the client requesting the data transfer. Since the OSD now has 
the intelligence to perform basic data management functions (such as space allocation, 
free space management, …etc.) those functions can be moved from the File SYSTEM 
manager to the OSD. The File SYSTEM manager now becomes simply a File Manager: 
an abstraction layer between the user application and the OSD. The File Manager 
provides backward compatible API for legacy codes to access files on OSD and, more 
importantly, it provides the security mechanisms required to ensure data privacy and 
integrity. More advanced capabilities of OSD can be exposed through the File Manager 
for user and system programs that wish to use them. 
 
DAS/SAN/NAS/OSD Comparison 
There are not actually any “new” data management functions in the OSD model. Rather it 
is simply a rearrangement of the existing functions in a general sense.  From the user 
application point of view, the application creates, reads, writes, and deletes files as it 
always has. It does not know where the data is stored nor should it care. It does have 
certain data requirements (storage management, security, reliability, availability, 
performance, …etc.) that must be met and OSD provides a mechanism to specify and 
meet these requirements far more effectively than DAS/SAN/NAS. The following 
sections compare and contrast DAS/SAN/NAS to OSD in terms of the requirements 
listed in Table 1.  
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Storage Management1 
Current estimates show that the cost of managing storage resources is about seven times 
the cost of the actual hardware over the operational life of the storage subsystems. This is 
independent of the type of storage (i.e. DAS/SAN/NAS). Given the tremendous growth 
in storage systems, storage resource management has been identified as the single most 
important problem to address in the coming decade. The DAS and SAN architectures rely 
on external storage resource management that is not always entirely effective and is in 
now way any kind of a standard. The NAS model has some management built into it but 
it too suffers from a lack of standards.  The OSD management model relies on self-
managed, policy driven storage devices that can be centrally managed and locally 
administered. What this means is that the high-level management functions can come 
from a central location and the execution of the management functions (i.e. backup, 
restore, mirror, …etc.) can be carried out locally by each of the OSDs and on an OSD 
peer-to-peer basis (i.e. a disk OSD backing itself up to a tape library OSD). 
 
The DAS architecture is very simple to manage if there is only one system involved with 
some number of storage devices attached to it. All the management functions can be done 
from the one system that these devices are attached. However, if there is more than one 
system with storage devices attached, then it becomes increasingly difficult to manage all 
the storage devices because the management is distributed among all the systems that the 
storage devices are attached to. There is no central point of management in this case.  
 
This problem is solved to some extent in a SAN configuration because ideally any one of 
the systems has access to all of the storage devices and management can be centralized 
on any one of these systems. A similar argument can be made for NAS devices since the 
network is a LAN and presumably any system on the LAN can see all of the NAS 
devices and hence can manage them all from a single system. Furthermore, the NAS 
devices have more “intelligence” built into them by their very nature (i.e. there is an OS 
with a file system, a communications stack, …etc.). This extra intelligence lends itself to 
the idea of self-managed storage making the overall task of managing storage resources 
somewhat easier. But is there a limit to the size of a system or the granularity of 
performance that can be managed in the NAS architecture? 
 
The point here is that centralized management of storage resources (devices, space, 
performance, …etc.) with distributed administrative capabilities (i.e. the ability to carry 
out management functions locally) is essential to future storage architectures. In order to 
achieve this, the OSD architecture is designed to be self-managed thus more fully 
utilizing the OSD Intelligence built into each OSD. The devices will know how to 
manage each of several resources individually or through an aggregation of OSDs. These 
resources include (but not limited to): 

• Space they have available at any given time 
• Bandwidth has been requested 
• Latency requirements of outstanding sessions 

                                                 
1 In this section, the term “management” refers to the ability to install, configure, monitor, and administer 
the physical and logical storage devices as well as the space on these devices. 
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• The number of operations it is capable of performing in a given amount of time 
 
Finally, OSD defines the concept of “object aggregation” whereby a hierarchy of OSDs 
can be made to appear as a single larger OSD. The resource management of this large 
aggregated OSD is done either through a single OSD at the top of the aggregation or can 
be done to each of the individual OSD devices in order to achieve maximum resource 
management flexibility. 

Security 
Security is second only to management in importance with respect to a data storage 
system. There are two basic threats that a secure system must guard against: External and 
Internal threats. External threats are attacks that come from outside the data storage 
system and outside the machines that are allowed access to the data on the storage 
subsystem. Internal threats are either benign or intentional. Benign threats are accidental 
access, modification, or corruption of data on a storage system. Intentional threats are 
intended to cause problems. In any case, multiple levels of security are necessary to 
authenticate, authorize access, ensure data integrity, and enforce data privacy.  
 
Data security is becoming increasingly complex as the deployed systems and associated 
data storage systems grow in number and complexity.  On the complexity scale, a DAS 
system is only as secure as the system that it is connected to. Assuming that the system is 
100% secure, then access to the DAS device is very restricted.  
 
By putting storage devices on a SAN however, there are more opportunities for access to 
the storage devices through other hosts that share the SAN. Generally, SANs are isolated 
and connected only to “trusted” host systems but there are still many other opportunities 
to connect to a SAN (i.e. through unused ports on a switch) and breach security. Since the 
SAN storage devices themselves do not have any notion of restricted access it is up to the 
host systems and SAN network infrastructure to enforce secure access to the storage 
devices.  
NAS devices also have only as much security as the networks they are on and the 
firewalls and other security measures they implement. Because NAS devices tend to be 
on LANs the access restrictions may not be as stringent as those on SANs. However, 
since the NAS devices have some intelligence, they can implement more effect security 
measures than SAN devices.  
 
The OSD concept incorporates a security model that includes four security levels:  

• Authentication – you are who you say you are 
• Authorization – you have permission to access to an object 
• Data integrity – data is not modified or corrupted 
• Data privacy – data is not to be seen by anyone else 

 
The authentication is performed by the  OSD transport layer. For example, for OSD over 
iSCSI over Ethernet, IPSEC would perform authentication. The remaining three levels 
are performed by the OSD itself. The authorization security mechanism is capability-
based whereby the OSD manager gives capabilities to the clients and the clients present 
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these capabilities to the OSD. Finally, data integrity and data privacy are achieved 
through the use of cryptography. These are all features that make OSD security different 
from NAS security and certainly better than DAS and SAN security. 

Device and Data Sharing 
Concurrent device and data sharing is nonexistent on DAS systems unless the data is 
exported through an NFS or CIFS share to other systems. At that point the system 
essentially becomes a NAS device. Again, a SAN partially solves the problem by 
allowing any system connected to the SAN to access any device connected to the SAN. 
This is ideal for device sharing because the SAN provides a very high performance 
connection between any system and any device on the SAN. However, the problem of 
data sharing is left to the file systems to figure out. There are several ways to solve the 
problem of data sharing on a SAN, each with its own strengths and weaknesses. It is 
beyond the scope of this paper to describe these other than to say that data sharing is not 
always optimal on a SAN particularly in heterogeneous system environments (i.e. 
NT/Windows versus UNIX-based systems). 
 
NAS devices are very good at sharing data even in heterogeneous system environments. 
The problem that NAS devices run into in this area is performance. There is a significant 
amount of overhead involved in performing each data transfer between the requesting 
system and the storage device where the bits reside. Furthermore, the store-and-forward 
model used by virtually all NAS devices can become a problem if not used correctly. 
 
In the OSD model, the protocol is system agnostic and therefore system heterogeneous by 
nature. Since the OSD is the storage device and the underlying protocol is supported on 
either a SAN (SCSI) or a LAN (iSCSI), device sharing becomes simple. Data sharing is 
accomplished as a result of this as well. The objects contained on an OSD are available to 
any system that has permission to access them. It is interpretation of the object that needs 
to be common among the systems that becomes important for effective data sharing. That 
interpretation is outside the scope of OSD but the ability to access the object is there. 

Storage Performance 
Performance requirements differ from application to application but they come down to 
three basic components that can be described as: 

• Bandwidth – the number of bytes per second that can be transferred between the 
requesting system and the storage device 

• Latency – the time from the receipt of a request until the first byte of data is 
received 

• Transactions rate – how many transactions of a particular size can be processed 
each second 

The performance of DAS can be managed fairly closely because there is only one system 
talking to the device at any given time. This system can therefore reorder the request 
queue to a DAS device to minimize latency, manage available bandwidth, and maximize 
the number of transactions per second.  
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Similarly, on a SAN, any given system is presumably one of many accessing a storage 
device at any given time. On an individual basis, any given system can realize the same 
performance as a DAS provided no other systems are using the target storage device or 
any other required resources (hubs, switch ports, …etc.).  The device-sharing capability 
of SAN however, makes the task of managing the storage performance exceedingly 
difficult. This is because the storage devices cannot differentiate between access requests 
and thus cannot give preferential treatment to any single request or set of related requests. 
Therefore, the bandwidth, latency, and transaction rates are not manageable on a SAN 
without some knowledge of the requesting system or the data being accessed. Neither of 
these pieces of information is available to the device in a standard SAN configuration. 
 
A NAS device can address some of these issues since it can know something about the 
files being accessed and the host requesting access. The practice of file “tagging” is used 
to identify certain performance characteristics of files when they are accessed. For 
example, if a high-definition video file is being read from a NAS device, it could know 
that is must transfer this file using 80MB/sec of 120MB/sec of available bandwidth on a 
specific network connection leaving the remaining 40MB/sec to transfer other files 
through that same network interface. This preferential treatment of requests has the effect 
of providing guaranteed bandwidth, latency, and/or transactions per second. But again, 
the tremendous overhead of NAS makes it difficult to compete with either DAS or SAN 
for raw performance in these three categories.  
 
The OSD model is very performance conscious. It is designed to allow performance 
characteristics of objects to be an attribute of the object itself and independent of the 
OSD where it resides. If the high-definition video file given in the previous example were 
on an OSD, it would have an attribute that specified an 80MB/sec delivery rate as well as 
a certain quality of service (i.e. a consistent 80 MB/sec). Similarly, there could be 
different attributes for the same object that describe delivery performance for editing 
rather than playback. In editing-mode, the OSD may have to skip around to many 
different frames thus changing the way the OSD does caching and read-ahead. Similarly, 
for latency and transaction rates, an OSD can manage these more effectively than DAS 
and SAN because it has implicit and explicit knowledge of the objects it is managing. 
The NAS concept of “file-tagging” is generalized and extended in the OSD model to 
accommodate current applications as well as future unforeseen application performance 
and functionality requirements. 

Scalability 
The term scalability means many different things. Hence another term, extensibility will 
be used in this section to expand upon the term scalability. Many of the items listed under 
the heading of “extensibility” can be accomplished by NAS devices. It is a question of 
the degree at which a storage device is extensible that is important. The OSD model is a 
single open model, not a specific proprietary implementation that is intended to provide 
the fundamental architecture that can extend far into each of the extensibility dimensions 
yielding years of opportunity and growth of storage systems built on the OSD model.] 
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This is only a partial list of extensibility dimensions but it demonstrates the breadth of 
characteristics that the OSD model encompasses: 

• Density – the number of bytes/IOPS/bandwidth per unit volume. OSD on 
individual storage devices can optimize these densities by abstracting the physical 
characteristics of the underlying storage medium and hardware to objects. 

• Scalability – what does that word really mean? 
o Capacity: number of bytes, number of objects, number of files, …etc. 

OSD aggregation techniques will allow for hierarchical representations of 
more complex objects that consist of larger numbers of smaller objects. 

o Performance: Bandwidth, Transaction rate, Latency. OSD performance 
management can be used in conjunction with OSD aggregation techniques 
to more effectively scale each of these three performance metrics and 
maintain required QoS levels on a per-object basis. 

o Connectivity: number of disks, hosts, arrays, …etc. Since the OSD model 
requires self-managed devices and is transport agnostic the number of 
OSDs and hosts can grow to the size limits of the transport network. 

o Geographic: LAN, SAN, WAN, …etc. Again, since the OSD model is 
transport agnostic and since there is a security model built into the OSD 
architecture, the geographic scalability is not bounded. 

o Processing Power – Given that the OSD model promotes the development 
of Active Storage Device technology it is reasonable to consider scaling 
the processing power on an OSD to meet the requirements of the functions 
the Active Disk is expected to perform. 

• Cost – address issues such as $/MB, $/sqft, $/IOP, $/MB/sec, TCO, …etc. 
• Adaptability – to changing applications. Can the OSD be repurposed to different 

uses such as from a film editing station to mail serving? 
• Capability – can add functionality for different applications. Can additional 

functionality be added to an OSD to increase its usefulness? 
• Manageability – Can be managed as a system rather than just a box of storage 

devices – Aggregated OSD management? Hierarchical Storage management? 
• Reliability – Connection integrity capabilities 
• Availability – Fail-over capabilities between cooperating OSD devices. Can this 

scale from 2-way failover to N-way failover? 
• Serviceability – Remote monitoring, remote servicing, hot-plug capability, 

genocidal sparing. When an OSD dies and a new one is put in it’s place, how does 
it get “rebuilt”? How automated is the service process? 

• Interoperability – Supported by many OS vendors, file system vendors, storage 
vendors, middleware vendors. 

• Power – decrease the power per unit volume by relying on the policy-driven self 
management schemes to “power down” objects (i.e. move them to disks and spin 
those disks down). 

 
The DAS and SAN devices run into significant problems with extending into many of 
these dimensions. Even though these systems are built from many of the same physical 
devices, it is the efficiency with which they can be used that is a true differentiator 
between DAS/SAN and NAS/OSD. As was previously mentioned in the Storage 
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Performance section, DAS/SAN devices have very good performance but cannot manage 
that performance effectively or efficiently. A NAS system has the potential to manage 
performance but suffers from other performance-related issues due to the file-level access 
protocols (NFS/CIFS) used with NAS subsystems. Many of these extensibility 
dimensions are “afterthoughts” and were never designed into the NAS model from the 
beginning.  
 
On the other hand, it is these extensibility features that the OSD architecture is designed 
to exploit to allow vendors to build more application-specific storage-centric systems 
thereby allowing storage vendors to more easily differentiate their products to address 
application requirements. The OSD architecture was designed with extensibility in mind 
rather than as an afterthought.  
 
How OSD Relates to File Systems – An example in Scalability 
Current file system technologies that access disk drives directly are “block-based” in 
nature. These file systems are responsible for the management of all available disk blocks 
on the disk storage devices they manage. Hence, the “file system manager” is the 
program that runs on a computer system that manages all the data structures on a disk 
storage device that make up a “file system”. The file system manager will perform file 
creation, data block allocation, tracking of which files occupy which data blocks, control 
of access to these files, file deletion, and management the list of free or unused data 
blocks. In performing these functions the file system manager examines and manipulates 
on-disk data structures such as information nodes (inodes) and directory trees.  
 
The file system manager manages two basic types of data: “meta-data” and “user data”.  
Meta-data constitutes the file system structure that ultimately contains the user data files. 
Therefore, the file system manager has the ability to understand the “structure” of the 
“file system” but not the contents of the user data contained in the file system.  Also, 
from the point of view of the file system manager, a disk storage device is simply a 
sequential set of disk blocks where a disk block is typically 512 bytes. All the meta-data 
and user data is mapped into this sequential set of blocks. From the point of view of the 
storage device, it only knows how to access 512-byte blocks. The storage device has no 
concept of the structure of these blocks as it relates to the file system or the data 
contained within the blocks. 
 
The problem with the model of a “block-based” file system is that it can be severely 
limited in scale. As the number of blocks in the file system grows the task of managing 
the location of all the files and associated user data blocks grows as well. In 2001 the 
180GB disk drive was shipped that contained 360,000,000 disk blocks. Three of these 
disk drives would constitute over one billion blocks to manage. A terabyte-sized file 
system would be made up of two billion blocks and a 10-terabyte file system, which is 
not uncommon these days, would be 20 billion disk blocks.  
 
The OSD model would move the management of these individual blocks to the devices 
themselves. The file system manager would then only need to manage objects – a far 
more manageable problem. The fact that a disk device has blocks is completely hidden 
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from anything outside the disk drive itself. In fact, it does not even have to be a “disk” 
drive. It could be a solid-state device, a MEMS device, or a quantum crystal device. It no 
longer matters to the file system manager as long as the device can store and retrieve 
“objects”.  Now the file system manager only needs to worry about managing 500,000 
objects and the fact that they take up the equivalent of 30 trillion 512-byte blocks is no 
longer directly relevant.  

Functionality 
DAS and SAN devices do two things and only two things: they write data and the read 
data. This is the limit of their functionality. NAS devices can perform more complex 
tasks such as snapshot backups, hierarchical storage management, data replication, …etc. 
because the NAS devices know certain attributes of the files they manage. However, 
most NAS device protocols still lack the extensibility to know and more effectively act 
upon the data they store. 
 
The OSD model extends beyond the simple attributes of a file and allows for application-
specific attributes that can specify relationships to other objects to form structures or 
functional attributes that can instruct the OSD to perform some operation (i.e. 
compression, encryption, …etc) on an object. The OSD model is intended to be used with 
the concept of Active Disks [Acharya] or Active Storage Devices. These devices can 
have significantly greater functionality than a simple DAS/SAN/NAS device because 
they can implicitly or explicitly act on the data they store.  
 
It is this concept of Active Storage Devices that makes OSD so compelling for users and 
storage vendors. The reason for this is simple: users need to spend more time working on 
and with their data than trying to figure out how to manage it. Storage vendors need to 
have some way to significantly differentiate their storage products in an increasingly 
commoditized storage market. OSD provides and extensible mechanism to facilitate the 
incorporation of unique functionality storage devices thereby differentiating them from 
other storage products based on their capabilities not simply bandwidth, transaction rate, 
or capacity. Furthermore, since these storage devices are intelligent, they can be self-
managed, autonomous “appliances” that are tailored to meet the requirements 
(processing, performance, reliability, …etc.) of specific applications. 
  
OSD Roadmap 
The concept of OSD has been around and in development for the past 10 years. Much of 
this work was pioneered by Garth Gibson and his research team at the Parallel Data Lab 
at CMU funded in part by Seagate. Recently however, an OSD Technical Working group 
has been formed as part of the Storage Networking Industry Association (SNIA – 
www.snia.org). The charter of this group is to work on issues related to the OSD 
command subset of the SCSI command set and to enable the construction, demonstration, 
and evaluation of OSD prototypes over the next several years. The command 
specification is to a point where working prototypes have been demonstrated by 
companies such as Seagate and Intel but no production or enterprise-level products have 
resulted from these prototypes yet. 
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Summary  
OSD is an enabling technology for the development of active storage devices. By 
allowing the storage devices to understand, interpret, and act upon the data they store, 
new classes of storage-centric devices can be brought to market that enhance customer 
workflows while reducing total cost of ownership. OSD can also allow for more highly 
differentiated storage products based on capabilities rather than simple capacity, or raw 
performance thereby enhancing a storage vendor’s ability to serve their respective 
markets. 
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Abstract 
Advanced networking technology has led to the genesis of the storage area network 
model, where host servers can access storage as a service from various devices connected 
to the network. While the initial approach to storage area networks has involved 
specialized networking technology, the emergence of Gigabit Ethernet technology has 
raised the question of whether we can use commodity IP networks for storage. This paper 
examines the issues involving IP storage networks and presents a performance analysis to 
dispel some of the myths and outline some of the challenges. 
 
1   Introduction 
With the steady increase in the storage needs of most organizations, block storage 
management is becoming an important storage management problem. Application 
servers, databases and file systems ultimately rely on the presence of an efficient and 
scalable block storage management system.  
 
In the past, the storage model assumed the presence of storage attached to every host 
server.  This type of host server-attached storage relied on the Small Computer System 
Interface (SCSI) protocol. The SCSI protocol emerged as the predominant one inside host 
servers due to its clean, well-standardized message-based interface. Moreover, in later 
years, it supported command queuing at the storage devices and allowed for overlapping 
commands.  In particular, since the storage was local to the server, the preferred SCSI 
transport used was Parallel SCSI where multiple storage devices were connected to the 
host server using cable-based bus. However, as the need for storage and servers grew, the 
limitations of this technology became obvious. First, the use of parallel cables limits the 
number of storage devices and the distance of the storage devices from the host server. 
The limits imply that adding storage devices might mean the need to purchase a host 
server for attaching the storage. Second, the concept of attaching storage to every host 
server means that the storage had to be managed on a per-host server basis, a costly 
implication for centers with a large number of host servers. Finally, the technology does 
not allow for an easy sharing of storage between host servers, nor typically does the 
technology allow for easy addition or removal of storage without host server downtime. 
 
The lack of scalability and manageability of the host server-attached storage model led to 
the evolution of the concept of a storage area network. Storage devices are assumed to be 
independent machines that provide storage service via a network to a multitude of host 
servers. The attraction of this approach is that host servers can share a pool of storage 
devices leading to easier storage administration. The advent of networking infrastructure 
capable of gigabit speeds further facilitates the service of storage over the network. 
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Furthermore, storage can be added, removed or upgraded without causing any host server 
downtime. In addition, the distance limitation of the host server-attached storage model is 
also removed. 
 
Approaches to storage area networks have involved specialized technology such as 
HIPPI, VaxClusters, Fibre Channel and Infiniband [3][6][7]. The motivation behind the 
design is to construct a network that meets all the performance and connectivity 
requirements of a storage area network. The downside to these storage area networks is 
the requirement to purchase specialized adapters, switches and wiring for equipping the 
network.  Furthermore, since storage area networks are not expected to be very high-
volume, the cost of these components tends to be on the higher side in comparison to 
commodity Ethernet networks. Finally, all these specialized networks have very limited 
support for wide area networking and security. In fact, accessing such specialized storage 
area networks over long distances requires an IP network bridge. 
 
The question then arises – is it possible to transport the SCSI storage protocol over 
commodity Ethernet IP networks [2] and still satisfy the performance requirements of 
storage area networks?   
 
The advantages of IP networks are obvious. The presence of well tested and established 
protocols such as TCP/IP allow IP networks both wide-area connectivity as well as 
proven bandwidth sharing capabilities. Furthermore, the emergence of Gigabit Ethernet 
and the future arrival of 10 Gigabit Ethernet seems to indicate that the bandwidth 
requirements of serving storage over a network should not be an issue [1]. Finally, the 
commodity availability of IP networking infrastructure indicates the cost of building a 
storage area network will not be prohibitive. 
 
This paper examines the issues involved in developing a high performance storage area 
networking solution. We present a performance analysis of a software-based IP Storage 
Area network. First, we measure the latency of block transfers to show that the protocol 
overhead of TCP/IP is minimal. Second, we do throughput measurements to show that 
while it is theoretically possible to saturate a Gigabit Ethernet network but that the CPU 
utilization is high compared to that in specialized storage area networks. We conclude 
this paper with an assessment of various hardware and software techniques that can help 
obtain high bandwidth at low CPU utilizations. 
 
2   IP Storage 
With the steady increase in the storage needs of most organizations, block storage 
management is becoming an important storage management problem. Both databases as 
well as file systems ultimately rely on the presence of an efficient and scalable block 
storage management system. The Small Computer System Interface (SCSI), rather than 
Advanced Technology Attachment (ATA), is the block management protocol of choice 
for most storage area network solutions because it supports command queuing at the 
storage devices and allows for overlapping commands. The SCSI protocol is mostly 
implemented over the parallel SCSI cable technology where multiple storage devices are 
connected to a SCSI bus via a cable. Though parallel SCSI technology supports gigabit 
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network speeds, the distance (few meters) and the connectivity limitations (16 devices to 
a channel) are hampering its acceptance as the gigabit networking transport layer of 
choice for the emerging large storage area networks. In addition, the parallel SCSI 
technology is more suited to attach to a specific host rather than being available as a 
network service which can be managed separately. Thus, specialized networking 
protocols such as Fibre Channel [3] and Infiniband [5] have been developed to overcome 
these limitations while still providing network-attached block storage at gigabit speeds. 
 
The Fibre Channel protocol covers the physical, link, network and transport layers of the 
OSI network stack. Fibre Channel provides support for many different service classes. 
The Fibre Channel protocol contains a SCSI over Fibre Channel definition called FCP.  
The FCP protocol optimizes data transfer by enabling zero-copy transfers to the receiving 
host and reduces buffering requirements by making every frame self-describing. The FCP 
protocol also contains a simple and conservative flow control mechanism. 
 
The Infiniband protocol also covers the physical, link, network and transport layers of the 
OSI network stack. The Infinband protocol provides support for many different service 
classes like Fibre Channel. In addition, the Infiniband protocol provides the QueuePair 
programming abstraction that allows application programs to transfer data directly from 
the network card into the application. The protocol provides the notion of verbs that 
allows application programs to send and receive data. The Infiniband protocol is similar 
to Fibre Channel in that it also supports a simple and conservative flow control 
mechanism. 
 
Storage over IP is currently driven primarily by the iSCSI protocol [4] that defines the 
operation of SCSI over TCP and tries to leverage the existing TCP over IP over Gigabit 
Ethernet infrastructure. The goal of iSCSI is to leverage TCP flow control, congestion 
control, segmentation mechanisms, and build upon the IP addressing and discovery 
mechanisms to create a seamless and scalable storage area network. iSCSI can be 
implemented as a combination of network adapter card with the TCP/IP and iSCSI layers 
in software. This approach has the appeal of benefiting from the commodity appeal of 
existing network adapters and switches, an important factor in lowering infrastructure 
costs. 
 
The challenges of building a storage area network over IP are not trivial. Detractors of IP 
storage area networks point out that the overhead of using TCP is prohibitive enough to 
result in poor latency for transaction-oriented benchmarks. It is also pointed out that 
common network application programming interfaces such as sockets do not allow for 
zero-copy transmits and receives of data leading to the overhead of multiple data copying 
[5]. Such data copying is considered harmful for overall throughput and will affect bulk-
data scientific and video applications. Finally, data is transferred from the network 
adapter to the host machine using frame-size transfers. This means that every bulk data 
transfer may involve multiple interrupts instead of at most one interrupt in the case of 
specialized storage networks. Consequently, the interrupt overhead can be the limiting 
factor in peak throughput if the storage device or host server CPU spends the majority of 
its cycles processing interrupts. 
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3   Performance Analysis 
We present a performance evaluation of a software implementation of IP storage and 
point out the performance characteristics that meet the requirements of storage area 
networks and those that do not. Our test-bed aims to determine the latency and 
throughput characteristics of a host server connected to a storage device over a Gigabit 
Ethernet network.  
 
We use the iSCSI protocol [4] to transfer SCSI blocks between the storage device and the 
host server. The iSCSI protocol is a standard for transporting SCSI blocks over TCP/IP 
and is expected to be an IETF standard by early 2002. The key features of the iSCSI 
protocol are: 

• Explicit login with the option to negotiate features such as security 
• Authentication using SRP and other optional algorithms  
• Trunking using multiple TCP/IP connections between storage endpoints 
• Digests using CRC-32C and other optional schemes 
• Encryption using IPSEC based algorithms 
• Framing for faster recovery at high gigabit speeds 
• Scalable discovery mechanisms using SLP and other protocols 

 
The storage device is a dual-733 MHz Pentium III with 128 MB of memory and running 
iSCSI server software on top of Linux 2.4.2. The host server is an 800 MHz Pentium III 
with 256 MB of memory and running iSCSI client software on top of Linux 2.2.19. The 
two entities are connected via a Gigabit Ethernet connection over an Alteon 180 switch. 
The Ethernet frame size used was the regular 1500 bytes and no Jumbo frames were used. 
In addition, TCP/IP zero copy optimizations were not used. Instead, we relied on the 
standard socket interface that meant that the TCP copy-and-checksum routines were 
performed on both the host server and the storage device. 
 
The test application resided on the host server and read raw SCSI blocks off a SCSI 
volume exported by the storage device. Since we wanted to isolate the efficiency of the 
transport, the application always read the same block so as to ensure a cache-hit. 
Otherwise, a cache miss would involve the RAID subsystem of the storage device and 
make it difficult to analyze the results. Writes were not measured as they can be done 
using various means (immediate, unsolicited, solicited) and add unneeded complexity to 
the analysis. 
 
3.1 Latency Analysis 
To measure latency, we used a single thread in the application to read raw SCSI blocks of 
various sizes from the storage device. For a particular block size, the same block was 
read 10,000 times and the average latency determined from the time required to perform 
the experiment. To measure throughput, we used 8 concurrent threads to read SCSI 
blocks of various sizes from the storage device. 8 threads were used because that is the 
concurrency limit imposed by the iSCSI client software in the host server. For a 
particular block size, each thread read a block 10,000 times and the throughput was 
calculated based on the time taken for all threads to finish reading the blocks. For the 
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throughput experiment, we measured the CPU utilizations of the host server and storage 
device using the vmstat utility. 
 
The latency measurements shown in Figure 1 indicate a variation of average latency for 
283 us for a 512-byte block to a high of 2469 us for a 64 KB block. The average latency 
values provide no meaning by themselves but are comparable (within 5%) of latency 
numbers obtained from the specification sheet of a Fibre Channel storage device for all 
block sizes [8]. We had expected the cost of TCP/IP segmentation to have an adverse 
effect on latency for the larger block sizes, but it appears that the Gigabit Ethernet adapter 
is doing a reasonable job of interrupt coalescing. This indicates that the TCP/IP fast path 
for transmits and receives does not impose a prohibitive overhead on latency. 
Consequently, we do not expect IP storage (even in its software incarnation with no 
optimizations) to have an adverse effect of transaction-oriented applications and 
benchmarks. 
 

Figure 1. Latency Measurements
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3.2 Throughout Analysis 
However, the throughput measurements indicate a different story. Figure 2 indicates that 
while the average throughput from the storage device is competitive for the lower block 
sizes in comparison to that obtained from a Fibre Channel storage device, the peak 
throughput is about 60% less than what is obtainable from a Fibre Channel storage 
device[8]. In these experiments, the peak throughput is about 52 MBps for the 64 KB 
block size and is constrained by the CPU of the host server whose utilization is at 100%. 
A profiling of the CPU utilization of the host server indicated that the primary 
components were interrupt overhead (72%) and TCP copy-and-checksum (23%).  
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In addition, during the throughput experiments for the 64 KB block size, the CPU 
utilization of the storage device is at 51% indicating that the storage device is capable of 
delivering additional throughput. In fact, by using multiple initiators, we are able to 
obtain a throughput of 100 MBps at around 98% CPU utilization in the storage device. At 
this throughput, the constraining factor was the limit imposed by the network adapter. 
The CPU utilization figures were not available for the Fibre Channel storage device [8]. 
 
The CPU utilization of the host server is greater than that of the storage device because 
the host server is the receiver of bulk data. The receiving of data involves interrupting the 
host server every time a frame arrives and increases the interrupt overhead even if 
interrupt coalescing is used. This implies that if the experiments above involved writes, 
then the CPU utilization of the storage device would be higher. 
 

Figure 2. Throughput 
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The results indicate that the main performance bottleneck in meeting the requirements of 
storage area networks is the high CPU utilization involved with bulk data transfers. The 
two main components of the high CPU utilization are: 

• Interrupt overhead due to frame size transfers from the adapter to the host at high 
rates. 

• The overhead due to TCP copy-and-checksum in standard TCP/IP stacks for bulk 
data. 

 
4 Improvement Techniques 
There are four potential avenues to reduce the high CPU utilization issues in an IP 
storage subsystem.  
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First, the interrupt overhead can be reduced by using 9KB Jumbo Ethernet frames, 
because this reduces the number of interrupts per bulk data transfer. For example, 
transferring a 32 KB data payload using the standard Ethernet frame may involve as 
many as 22 interrupts in the worst case whereas using the 9KB Jumbo Ethernet frame 
only 4 interrupts may be involved. However, the Jumbo Ethernet frames are not 
standardized and are not likely to be present in 10 Gigabit Ethernet.  
 
Second, modified TCP/IP stacks with zero-copy transmit capability can be used to reduce 
the TCP copy-and-checksum overhead; the responsibility of generating the checksum is 
off-loaded to the network adapter. However, zero-copy receives are not possible on such 
stacks because the network adapters are typically unaware of the final destination of any 
frame. 
  
Third, network adapters with TCP/IP offload engines (TOE) have been released [9] 
where the entire TCP/IP stack is offloaded onto the network adapter. This also reduces 
the TCP copy-and-checksum overhead. However, zero-copy receives are not possible on 
such stacks because the TCP/IP stack is also typically unaware of the final destination of 
any TCP/IP packet. There is proposed work to add enough application hints to the 
TCP/IP header to make zero-copy receives possible. 
 
The fourth and most promising approach is the anticipated emergence of specialized 
adapters that have an iSCSI interface. This approach will reduce the interrupt overhead, 
as the iSCSI adapter will ensure at most one interrupt per data transfer. In addition, 
offloading the protocol processing to the adapter will eliminate TCP/IP copy-and-
checksum overhead. The disadvantage of this approach is that the use of such specialized 
adapters implies that commodity network adapters cannot be used in IP storage area 
networks. However, one can still use the existing switches and wiring present in 
commodity Ethernet networks. 
 
5 Conclusions 
Advanced networking technology has led to the concept of storage networks where 
pooled storage is available as a service to host servers. The emergence of Gigabit 
Ethernet technology has raised the question of whether we can use commodity IP 
networks for storage instead of specialized storage area networks. This paper examines 
the issues involving IP storage networks and presents a performance analysis focusing on 
latency and throughput. The results indicate that the main performance bottleneck in 
meeting the requirements of storage area networks is the high CPU utilization involved 
with bulk data transfers. The two main components of the high CPU utilization are the 
interrupt overhead due to the bulk data transfers as well as the TCP copy-and-checksum 
overhead. We finally present four potential avenues to reduce the high CPU utilization 
issues in an IP storage subsystem. 
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Abstract 
There is a definite trend in the enterprise storage industry to move from Network 
Attached Storage (NAS) solutions to high performance Storage Area Networks (SAN).  
This transition is not easy because of the well-entrenched NAS infrastructure that has 
already been deployed. This paper attempts to define a file system that can leverage the 
existing NAS software infrastructure along with evolving SAN technology to provide 
the benefits of high performance storage access while reducing the cost of migrating to 
these networks. 
In this paper, we propose a new network file system, DirectNFS, which allows NAS 
clients to take full advantage of the performance and scalability benefits of SANs.  In 
order to achieve this goal, the system presents a NAS interface to existing NAS clients 
while allowing DirectNFS clients to access storage directly over shared SAN, i.e. 
clients bypass the server for data access. A server maintains the NAS interface for 
legacy clients and arbitrates access to metadata by DirectNFS (SAN aware) clients. This 
metadata server ensures that the system is operable for both legacy NAS clients as well 
as DirectNFS clients. The communication protocol of DirectNFS is designed as an 
extension of traditional network file systems protocols, such as NFS and CIFS.  
A prototype of DirectNFS has been built for Linux, as an extension to the native NFSv2 
implementation. Initial results demonstrate that the performance of data intensive 
operations such as read and write is comparable to that of local file systems, such as 
ext2. 

1. Introduction 
For the past few years, there has been an increasing trend to replace NAS storage 
systems by SAN. The primary reasons for this migration have been the increased data 
storage requirements that constantly plague the enterprise computing environment. 
SANs provide seamless expansion, combined with high throughput, and increased 
manageability.  However, NAS architecture has been around for many years and has a 
well-entrenched installed base. The migration to SAN makes this NAS infrastructure 
obsolete and adds to the cost of already expensive SAN systems. One major drawback 
of the SAN systems that are deployed now is the lack of interoperability. However, this 
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situation will eventually be remedied as more users adopt SANs and as SAN standards 
evolve. 
Today, with multiple operating systems and multiple vendor platforms present in most 
data centers, SAN inter-operability is highly valued.  NAS technologies, on the other 
hand, are mature and interoperable. They use de-
facto standards such as NFS[1] and CIFS[2] to 
provide data access. NFS clients are available for 
almost all platforms. Both NFS and CIFS have 
mechanisms to control and synchronize 
simultaneous access to shared data.  These 
inherent features of NAS were taken advantage 
of in the design of DirectNFS. 
A simple way of using the SAN, as shown in 
Figure 1, is to retain the familiar client/server 
model, with all the storage resources on the SAN 
appearing as local disks to the server. All the file 
accesses by clients in this scenario are forced to pass 
through the file server. This creates heavy loads on the file server. 
 
In order to eliminate this overhead of data being copied through both SAN and LAN, 
the clients must be given the ability to access the data directly through SAN. To enable 
clients to access data directly, we have to provide them with a file location map that 
describes on which device and on which block the file data resides - information that is 
maintained as part of the metadata of the file system.   
 
There have been different solutions to the distributed storage problem, ranging from 
“Shared Everything” to “Shared File Volume” architectures. In a “Shared Everything” 
filesystem, all clients maintain data as well as metadata portions of the file system. Most 
of the cluster file systems follow this approach (Petal /Frangipani[3], GFS[4]). In a 
“Shared File Volume” filesystem, one central entity is in charge of updating the data 
and metadata. Most client / server file systems follow this approach (NFS, CIFS). In a 
“Shared Everything” approach the implementation of the file system and its recovery on 
failure is complex. On the other hand, in a “Shared File Volume” approach, the 
scalability and performance of the file system are limited due to the existence of a 
single server. In the design of DirectNFS we have chosen to tread a middle ground 
between these two approaches. We have chosen to create a shared architecture for data, 
by making the clients aware of the physical layout of each file, which allows the clients 
to access data directly through the SAN. However, we do not allow clients to modify 
the metadata directly. Once we allow the clients to access data directly, the NAS-
provided guarantees of single system semantics break down. This is unacceptable 
because a lack of single system semantics would lead to corruption of the file system. 
The solution is to create an entity that enforces these semantics, and this entity in 
DirectNFS is known as the metadata server. The metadata server is responsible for all 
metadata modifications in the file system. Since most filesystem metadata operations 
are atomic in nature, a single authority in charge of metadata modifications makes file 
system implementation and recovery easier. The metadata server also provides NAS 

LAN 

SAN 

Figure 1: SAN with NAS Clients 
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interfaces to legacy clients for interoperability.  This approach does have a drawback of 
introducing a single point of failure (metadata server) which makes the system less fault 
tolerant as compared to “shared everything” file systems. We believe that the potential 
gains from implementing a “shared 
everything” file system and making it 
compatible with legacy clients are not 
worth the complexity of the 
implementation. 

DirectNFS clients are allowed to 
cache the block metadata, or the 
information pertaining to location of files. 
Coherency is enforced using a lease 
protocol. The metadata server acts as an 
arbitrator between the clients to make sure 
that the cached metadata is valid. The 
network architecture of DirectNFS is shown in Figure 2. By adding a SAN connection 
and DirectNFS software to each client, clients can utilize the file server for file system 
metadata access, locking, and coherency, but they read and write file data directly from 
the storage, bypassing the file server. The introduction of a simultaneous data access 
path can improve file serving performance through parallel and direct transfer of data 
between the data sources and the client systems. This also achieves better utilization of 
the file server by reducing the CPU and network load on the metadata server. Clients 
that either do not have a SAN connection or do not have the DirectNFS software can 
continue to access data through the server using the NFS or CIFS protocol clients, 
which they already have.  This makes DirectNFS a powerful tool in migration of 
existing LAN/NAS combination to SAN. 
We have implemented a GNU/Linux prototype of DirectNFS. Many platforms such as 
FreeBSD, Solaris and HP-UX were considered for reference implementation. 
GNU/Linux was chosen primarily because of the ease of source code availability, 
general acceptance in terms of usage and the support from the large community of 
hackers. 

In our GNU/Linux prototype, we have demonstrated throughput comparable to that 
of a local (ext2) file system. Thus, we provide client applications the ability to have 
both shared file access and near local file system performance simultaneously. We have 
also observed lower server resource utilization in the metadata server compared to a 
NAS server, which implies that DirectNFS can support more clients than traditional 
NAS servers. DirectNFS implementation is transparent to applications running on the 
clients: no source code changes are necessary to client applications.  During system 
operation, DirectNFS can be turned on or off without altering the file system semantics.   
In this paper, in section two we talk about the goals associated with the DirectNFS 
design, section three talks about the design in detail. Section four of this paper deals 
with the Linux prototype. Section five discusses work done previously in this area. In 
section six, we highlight the performance achievements of DirectNFS. We present 
future directions for DirectNFS in section seven, and conclude in section eight. 
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Figure 2: DirectNFS Network Architecture 
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2. DirectNFS Design Goals 
In this section, we provide a list of design objectives of the DirectNFS architecture. In 
subsequent sections, we discuss the DirectNFS architecture in greater depth. 
• Storage Scalability - Storage space must scale well with the continuous 

accumulation of data. 
• High Performance - DirectNFS aims to provide a high performance remote file 

system, with orders of magnitude performance improvements over traditional NAS 
protocols. 

• File System Scalability and Recovery - To create a simple distributed file system 
that can provide both scalability and recoverability. 

• Independence from Physical File Systems - DirectNFS must be able to run 
irrespective of the underlying physical file system that is used for storage. 

• Portability - DirectNFS should be portable to other Operating systems without 
much effort. 

• File Virtualization over SANs - Enable the seamless integration of Storage Area 
Networks into NAS environments by adding a “File Virtualization” layer on top of 
the block-level interface that SANs provide.    

3. Design 
 
The basic philosophy behind the design of 
DirectNFS is the separation of data from 
metadata operations to increase parallelism 
in file system operations. Only read and 
write operations are taken over by 
DirectNFS client software, all the other file 
system operations are still performed 
through the NAS protocol. This makes 
DirectNFS design portable, thereby 
enabling us to use the same design on a 
host of other platforms including NT, BSD, 
Solaris and HP-UX.  
The Figure 3 shows these operations more 
clearly, the communication between the 
DirectNFS client and metadata server. This 

communication includes lease protocol communication to maintain metadata coherency, 
the metadata information requests and NAS protocol functionality that is not intercepted 
by DirectNFS. The legacy NAS client communicates with the metadata server as if it 
were an ordinary NAS server. 

3.1.Architecture Overview 
This section provides an overview of DirectNFS architecture including DirectNFS 
extensions to the NFS protocol, cache coherency mechanisms, optimizations, and 
security. 
 

Figure 3: DirectNFS Architectural Overview 
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3.1.1. Extensions to NFS 
DirectNFS defines extensions to the NFS-RPC[5] protocol that implement the 
separation of the data/metadata path. This includes new RPCs used by the clients to 
retrieve the physical location of files on the storage (block lists) and additional RPCs to 
enforce cache coherency. The native RPC set of NFS is used to perform metadata 
operations on the server. 
The new RPCs implemented by DirectNFS are,  

• GETBLKLIST : This RPC allows the clients to get the block list of the files that 
are present in the system. The arguments to this RPC are the NFS file handle 
and the byte range for which the block list is requested.  

• GETLEASE : This RPC is used by the DirectNFS client to acquire the lease for 
locally cached metadata. This RPC can be piggy backed on the GETBLKLIST 
RPC. The argument is the NFS file handle and duration. The reply sent by the 
server indicates whether the requested lease has been granted or denied. 

• VACATELEASE : This RPC is used by the metadata server to ask a client to 
release the lease it has on certain file. The argument to this RPC is NFS file 
handle.  

• VACATEDLEASE : This RPC is issued by the client, when it releases an lease 
due to the request from the metadata server. 

Using these RPCs, clients are able to retrieve the physical locations of files and access 
them directly without conflict. 
3.1.2. Metadata Caching and Cache Coherency 
DirectNFS clients use extensions to the NAS RPC protocols to retrieve file metadata, 
i.e. physical block and device numbers.  This file metadata is then cached locally on the 
client in a Block-Number Cache (BNC).  This allows DirectNFS clients to cache the 
most frequently used physical block numbers for files that are most frequently used.  
However, introducing a distributed cache also introduces coherency issues, which we 
solve using a leases-based protocol. 
A lease is a time-bound object granted by a lease server to a lease client. In DirectNFS, 
a lease is granted on a per-file basis to clients by the metadata server. The lease 
guarantees the client that as long as its lease is valid; it holds the most current copy of 
the data object (i.e. the cached list of blocks for the file). Multiple clients are allowed to 
share leases on the same data object for read-only access. However, any changes to this 
data by a third party can only be made when the server has revoked all other leases. 
This revocation is either done explicitly by notifying the client, or implicitly, if the 
leases time out. In either case, once the lease expires, the lease-holder has to discard the 
cached data protected by the lease. 
The time-bound property of leases ensures simple recovery of clients/servers in case of 
a crash or network failure. Neither the client nor the server maintains any state. In case 
of a system crash, the leases that were issued before the system went down will expire, 
which brings the system to a known, stable state. This makes the recovery algorithm 
extremely simple to implement, especially when compared to the NLM protocol or 
other Distributed Lock Managers. 
However, this coherency mechanism does not protect the system against SAN 
partitions, which may lead to data corruption – it is assumed that the SAN provides a 
reliable and available service for data delivery.   
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When the DirectNFS client needs to read/write a block of data, it first ensures that it has 
the right lease for the kind of access it needs to 
perform. The interaction between DirectNFS 
clients and metadata server for lease acquisition 
in write and read scenarios is illustrated in 
figures 4 and 5 respectively. 
Once the lease has been validated, the client 
looks up the Block Number Cache for the 
physical location of the data. The metadata 
server is then queried for metadata information 
only in the event of a cache miss.    
Metadata caching is augmented with “write 
allocation gathering”. This is the process of 
deferring disk block allocations during file 
writes. In DirectNFS, we do write allocation by 
gathering write requests at the client. Smaller 
byte-range requests are merged into larger 
requests, thereby reducing the number of 
metadata requests to the server. This 
significantly improves performance, by reducing 
the number of requests to the server that the 
server has to service. “Write gathering” [6] 
performed by NFS is similar in its approach 
and it is used to exploit the fact that there are 
often several write requests for the same file presented to the server at about the same 
time. 
3.1.3. Write Gathering 
Distributed-system file access patterns have been measured many times[7]. It has been 
found that sequential access is the most common access pattern.   
Under DirectNFS, for every write request, a cache miss would result in a 
GETBLKLIST RPC being sent to the metadata server. To improve write performance, a 
technique called write gathering is employed that exploits the fact that there are often 
several write requests for the same file called about the same time. With this technique 
the data portions of these writes are combined and a single metadata update is done that 
applies to them all. In this way, the number of RPCs being sent out would dramatically 
reduce, and considerably improve write performance.  
The performance for write gathering depends on the periodicity of the deferred write 
requests to the server. Two events can trigger this: the write back cache being flushing 
periodically and an eviction notice received at the client.  
3.1.4. File Virtualization 
One of the major issues of merging SAN and NAS is the basic unit upon which they 
operate. The legacy NAS protocols operate at a “File” level abstraction. However, the 
SAN systems normally present the block level interfaces that are leveraged by 
filesystems.   
In the DirectNFS design, we were faced with the problem of maintaining support for 
legacy clients, which meant that we needed to maintain the file level abstraction. On the 
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other hand, the benefits of the SAN can be leveraged if and only if we went down to the 
block level. In order to solve this problem we created a “virtualized file interface over 
SAN”, where the legacy NAS clients are under the impression that the NAS server 
stores the files, but the DirectNFS clients went below the file abstractions to leverage 
the SAN performance by using block device interface directly. In order to implement 
this duality, we had to achieve the data-metadata split and create other mechanisms like 
the lease framework in order to tackle complexities arising out of the merger of SAN 
into NAS. 
The DirectNFS file system had to merge these two different worldviews to create a high 
performance distributed file system, which offered a NAS interface. This was achieved 
by maintaining a “Virtual File Interface”. However, the DirectNFS client behavior can 
be compared more to block device driver, than really a NAS file system client. In other 
words, we introduced the SAN abstractions and performance to the NAS protocols 
without breaking it. This unification of SAN of under NAS is what is referred to as file 
virtualization in DirectNFS. 
 
3.1.5. Security Considerations 
There are certain assumptions that are critical to DirectNFS architecture that need to be 
pointed out while understanding the security mechanisms in DirectNFS. They are 
• The base NFS protocol operates on atomic data entities known as files.  
• DirectNFS does not alter the semantics of NFS protocol 
• DirectNFS relies on the file system and block device layer to provide security that is 

needed. 
DirectNFS has modified the VFS layer[8] of NFS communication not the NFS 
semantics. The real physical file system must be present for DirectNFS to work. This is 
a strict requirement because we still rely on the file abstraction to maintain the 
coherency of data. 
In DirectNFS, the file system layer is responsible for security and data coherency. In 
order to solve the coherency problem at file level, we have created a framework of 
leases ensuring that coherency is maintained at the file system level.   
 
However, in case of rogue agents who can access the storage system at the block 
interface by bypassing DirectNFS completely, the possibility of unauthorized access 
remains, unless the block access mechanism (block device driver) provides security.  
We currently provide only file level security but do not provide block level security. 
NASD [9] addresses the issue of block level security with the help of special hardware. 
If the shared storage contains security mechanisms, for example iSCSI [10] has security 
mechanisms built in and when DirectNFS operates on those environments it can be 
made to run in a secure mode by leveraging these underlying mechanisms. Thus 
DirectNFS relies on existing infrastructure to take care of security (iSCSI, Fiber 
channel[11], NFS). This is a conscious design decision made in favor of making this 
protocol run on extremely varied range of hardware.  
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4. Implementation of the Linux Prototype 
The implementation philosophy of DirectNFS was to reuse existing libraries as far as 
possible and to maintain portability. It was implemented as a kernel loadable module on 
Linux 2.4.4, and it consists of roughly 8000 lines of code on the client and 1500 lines of 
code on the server.  
 

4.1.DirectNFS with FiST 
In order to make the implementation easier and portable we have used FiST (File 
System Translator). FiST [12] is a stackable file system generator. It defines its own 
highly abstract Domain-Specific Language (DSL) for describing file-system filters. A 
compiler translates the DSL description to C code for various operating systems. FiST 
also provides the necessary infrastructure for interposing the generated filter between 
the VFS (Virtual File System) and the natively installed file systems in the kernel.  FiST 
played an important role in the initial phase of the implementation, when we used it to 
generate a code skeleton for a simple, pass-through file system that interposed itself 
between the VFS layer and the NFS client.  
On the DirectNFS client, the Linux DirectNFS module can be thought of as consisting 
of these sub-modules: 
1. The DirectNFS Filter/Redirector – This component interposes itself between the 

VFS and the NFS client module. It intercepts all file I/O operations (read, write) and 
redirects them as block I/O requests over the SAN. This was achieved by modifying 
the basic FiST-generated filter to enable us to intercept I/O operations instead of 
passing them down the file system stack, which is the default FiST policy. The I/O 
interception code in the redirector is system-dependent.  The redirector also contains 
the Block Number Cache, where the client caches location information for each file 
that is accessed over DirectNFS. 

DirectNFS Redirector Lease 
Service

NFS Client 
Transport 
Wrapper

VFS 

Lease 
Service

knfsd 

DirectNFS 

RPC Client/Server RPC Client/Server

Transport 
Wrapper

DirectNFS Client DirectNFS Server

Physical File System 

VFS 

SAN 

Figure 6: DirectNFS Software Architecture 
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2. Leasing Service – This is a distributed protocol, which allows multiple DirectNFS 
clients to keep their cached metadata coherent. The leasing service has been built as 
a library that is independent of the transport mechanism underneath it. This allows 
us to plug in any transport mechanism by writing a transport wrapper for the 
mechanism. 

3. Transport Wrapper – This provides an interface between the leasing service and 
the transport layer, in this case - RPC. This wrapper allows the file system client to 
query file location information (i.e. block numbers) from a central server and to 
communicate lease requests to the server. 

The DirectNFS server module consists of: 
1. Leasing Service – This is the server-side counterpart of the leasing service. It is 

responsible for maintaining a list of lessees for each file, and to resolve lease 
conflicts. 

2. Transport Wrapper – The transport wrapper on the server as on the client provides 
an interface between the leasing service and the transport layer. This wrapper allows 
the server to interface with file system clients that query for file location 
information and to communicate lease rejections or grants to them. 

3. DirectNFS client – A DirectNFS client is interposed between VFS and the physical 
file system, to provide lease-based coherency for locally originating file accesses. 
This could be from local applications trying to access the physical file system or 
from knfsd while it is serving legacy NAS clients. 

The DirectNFS module on the client is responsible for trapping file open, close, sync, 
unlink, read, and write calls. Since these operations access the location information of 
the file, the file’s lease is tested for validity. If the lease is invalid, it is acquired by 
issuing a GETLEASE RPC to the metadata server. For read and write operations, the 
Block Number Cache is looked up for cached block numbers. On a cache miss, a 
request is sent to the server, with a piggybacked lease request, if required. This is done 
with the GETBLKLIST RPC. Once the client is granted a valid lease on the file, and 
receives the requisite file location information, it accesses those blocks directly over the 
SAN. 
In the event that the client receives a VACATE RPC, which signals the server ordering 
an eviction of the lease that the client holds on the metadata, the client flushes the cache 
that is associated with the file, and then proceeds to inform the DirectNFS server by 
sending the VACATED RPC.  
Note that the DirectNFS Leasing Service makes the following assumptions: 
1. The lease is time-bound, has a fixed duration, and must be renewed explicitly at the 

server in order for its time period to be extended.  
2. The clock skew between the participating entities in the lease protocol is bounded.  
3. The time taken by the client to flush its cached after eviction is bounded. 
Lease conflicts are resolved by the lease server using the matrix in Table 1. 

 Read Write 
Read Shareable Non 

Shareable 
Write Non 

Shareable 
Non 
Shareable 

 
Table 1: Compatibility Matrix for DirectNFS Leases
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5. Performance 
One of the principal objectives of 
DirectNFS is performance. In this 
section, we present the performance 
numbers that we obtained from the 
prototype implementation.  We have 
measured the performance of 
DirectNFS against other file systems 
like ReiserFS[13], ext2 and NFS 
versions 2 and 3[14].  The systems 
under test were three HP Netserver LC 
2000, Pentium III’s -933 Mhz with 128 

MB RAM and 256KB L2 cache. The 
machines were running Redhat 

Linux, with custom-built kernels from the 
2.4.x series. They were connected to a 
JBOD (HP Rack Storage/12) of four Ultra 3 
Hot-Swap SCSI[15] disks 9 GB each. The 
system was set up in a SCSI multi-initiator 
arrangement, with two machines acting as 
DirectNFS clients, and one machine as the 
DirectNFS metadata server, with all three 
machines sharing access to the JBOD 
through a shared SCSI bus. This was used 
to emulate a SAN. The benchmarking 

utility that we used was Iozone [16]. 
We benchmarked the performance of 
DirectNFS with varying file sizes and 
record sizes. From the data, we observed 
no significant variations in the 
comparative figures. Hence, we have 
included the performance figures of read, 
write, reread and rewrite of a 2GB file 
over ResierFS, DirectNFS, Ext2, NFS2 
and NFS 3. Figure 7 is a the performance 
graph of various file system read 

throughputs for varying file sizes, with fixed record size of 256 KB. The rest of the 
graphs - Figures 8, 9 and 10 - carry comparisons of write, re-read and re-write 
operations. These figures indicate that DirectNFS performances are comparable to local 
file systems.  
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The write performance of DirectNFS shown in Figure 8 is slightly worse than Ext2 and 
ReiserFS. Re-read and re-write were tested so that we could measure the effects of the 
Linux page cache.  
We have measured throughput for these 
four operations with varying file sizes 
starting from 100 MB up to 2GB and 
varying record sizes starting from 4 KB up 
to 256 KB. Since the throughput figures 
we obtain did not vary significantly across 
these series, we reproduce data for 256KB 
record sizes only. The file sizes selected 
were suitable large, as we expect the 
primary use of DirectNFS to be 
multimedia applications (e.g. streaming 
media servers), which use large files.  
Note that NFS v2 and v3 throughput 
figures that we measured were very close 
to each other. Even though NFS 3 
implements Asynchronous writes, NFS 2 
clients under the Linux use write caching and by default run with synchronous writes 
set to off. This hides the RPC latency of NFS from client applications. However, we 
wanted to compare against real world performance and hence we tried to measure 
against the fastest NFS performance possible.  
From a glance at the throughputs for read and re-write tests, it appears that DirectNFS 
performance comes close to matching the performance of both ReiserFS as well as ext2. 
This can be accounted for by the metadata cache, which contains logical to physical 
block translations, and improves the performance of DirectNFS, bringing it close to 
ext2 and in some cases surpassing it (this is because the mapping function for the cache 
is less expensive than the corresponding lookup operation in EXT2 or ReiserFS). We 
also examined the effect of record size on performance. Figure 11 is a comparative 
graph for the read operation for various file systems with fixed file size but with varying 
record size.  We did not observe any significant effect of record size on throughput of 
any of the file systems under consideration. This is most likely due to the pre-fetching 
in the VFS layer. 
 

If we look closely at the performance 
relative to NFS2 or NFS3, we see that 
the performance improvements that are 
achieved are significant, and are 2 to 3 
times that of the Linux implementation 
of NFS.  
There are two measures of goodness for 
a network file system, the first is the 
throughput that each client can expect 
from the file system, and the second is 
the server scalability. DirectNFS 
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addresses both of them by increasing the client throughput by a factor of 2 to 3 as 
compared with competing NAS technologies like NFS, and increases the server 
scalability significantly by reducing CPU utilization at the server. 
A look at Figure 12 shows the relative CPU utilization of DirectNFS with NFS. The 
tests that were carried out were sequential read, sequential reread, sequential write, and 
sequential rewrite. Now, if we look at the NFS performance, we can conclude that NFS 
(with a single client running Iozone tests on a file of size 1GB) requires a mean CPU 
utilization of more 
than 20%. Thus, the 
scalability of the 
server is limited to the 
number of clients that 
access the NFS server 
at any point of time. 
However, a look at the 
DirectNFS numbers 
for the same test 
conditions shows a 
radically different 
scenario. One can see 
that there is an initial 
period where the CPU 
utilization is roughly at an average of 10%, with a peak utilization of 20%. This is 
because of aggressive pre-fetching of metadata by the DirectNFS client during the start 
of file I/O. This accounts for the lower CPU utilization on the server when servicing a 
DirectNFS client as compared to a NFS client.  
Thus, it can be seen that the CPU utilization is significantly lower than NFS utilization 
for the same one client setup that we used to measure NFS utilization. This indicates 
that the DirectNFS metadata server may scale better than NFS servers. 
Another key parameter by which scalability can be judged is the amount of network 
traffic, expressed in terms of the number of RPCs that are required for a given operation 
to take place. A measurement of the number of RPCs that are required to run the given 
set of tests reveals that DirectNFS uses about a tenth of the total number that is required 
for NFS. This can be explained by the fact that the number of metadata requests in 
DirectNFS is drastically lower than NFS because of write allocation gathering and the 
metadata pre-fetching performed by the client. This makes the data-metadata split 
attractive, as this considerably reduces the traffic on the network and makes DirectNFS 
a lot more scalable.  
Overall, DirectNFS performs significantly better than NFS for all of the tests, 
outperforming it by a factor of 2 to 3. 
DirectNFS has been designed to counter network bottlenecks and ‘store-and-forward’ 
overheads on NAS servers. So, the server CPU and I/O subsystem are no longer the 
bottleneck. Introducing parallelism to storage access also means that the system will 
scale as the available bandwidth for the storage network increases. Isolating storage 
traffic on to a separate network allows for better utilization of the messaging network by 

Figure 12: CPU utilization figures for a single client setup 
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other network application protocols. 
6. Future Work 

1. Client Side Disk Caching: To further improve performance, the size of the 
cache that holds the physical block translations should be made as large as 
possible. To overcome the memory size limitations that we will come across 
when dealing with large files and clients with multiple such workloads, the 
block translations can be stored on disk. Thus, the limitation that currently exists 
on the number of cacheable translations increases greatly, helping us to achieve 
greater scalability. 

2. Volume metadata caching: When the metadata server receives a 
GETBLKLIST request, the DirectNFS filter uses the physical file system’s 
bmap operation to obtain the physical block numbers for the requested byte 
range. Normally, the block buffer cache would cache the most frequently used 
blocks in the storage system. Servers normally have a large amount of RAM, 
and we feel that caching the entire metadata for the file volume is feasible. In 
fact, for a file system formatted with 4KB-sized blocks, the cost of caching all 
the physical block numbers of the volume is about 1MB per GB. 

 

7. Related Work 
There are some interesting existing systems in the distributed File Systems space. 
Storage Tank [17] follows a similar approach for moving the data access path away 
from the server. However, the design of Storage Tank lacks the portability of 
DirectNFS. This is because DirectNFS uses a portable approach leveraging the ability 
of a code generator like FiST to drastically reduce the porting of the file system to 
multiple platforms. Many cluster file systems such as the Veritas Cluster File System 
[18] are layered above and integrated with a proprietary physical file system. CMU’s 
Network Attached Secure Disks requires Intelligent Devices, which embed some file 
system functionality in the Storage devices thus handling various issues like security, 
scalability and object management. NASD addresses the security aspects of a SAN 
based file system well, but the need for manufacturers to incorporate these changes into 
disks highlights the problem associated with this approach.  
 Other similar work in the area includes Frangipani/Petal, Tivoli’s SANergy [19] and 
EMC’s Celerra[20]. 
 
8. Conclusion 
 
DirectNFS presents an optimum blend of NAS and SAN storage technologies. It uses 
traditional distributed file system protocols such as NFS for meta-data access, with 
extensions for direct data access using SANs.  The end result is a distributed file system 
that scales much better at high loads and has a data throughput that is a factor of 2 to 3 
better than existing NAS protocols. In fact, this performance was comparable to that of 
a local file system.  
The portable design of DirectNFS makes it relatively simple to port to other operating 
systems. In the future, we plan to port DirectNFS to other platforms such as HP-UX, 
Windows2000 and FreeBSD and add CIFS compatibility. 
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Abstract 
In this paper, we describe an architecture, NFS^2, for uniting several NFS servers under a single 
namespace.  This architecture has some interesting properties.  First, the physical file systems that make 
up an NFS^2 instance, i.e., the file systems on the individual NFS servers, may be heterogeneous.  This, 
combined with the way the NFS^2 namespace is constructed, allows files of different types (text, video, 
etc.) to be served from file servers (potentially) optimized for each type.  Second, NFS^2 storage is 
strictly partitioned—each NFS server is solely responsible for allocating the resources under its control.  
This eliminates resource contention and distributed lock management, commonly found in cluster file 
systems.  Third, because the system may be constructed with standard NFS servers, it can benefit from 
existing high-availability solutions for individual nodes, and performance improves as NFS servers 
improve.  Last, but not least, the system is extremely easy to manage—new resources may be added to a 
configuration by simply switching on a new server, which is then seamlessly integrated into the cluster.  
An extended version of this architecture is the basis for a completed prototype in Linux [5]. 

1 Introduction 
NFS [1] servers are widely used to provide file service on the Internet.  However, adding new servers to 
an existing namespace is management intensive, and in some ways inflexible.  When a new server is 
brought online, all clients requiring access to the new server must be updated to mount any new file 
systems from the server, and access rights for the new file systems must be configured on the server.  
Additionally, the new file systems are bound to sub-trees of each client’s namespace. 
 
The NFS^2 architecture allows standard NFS servers to be combined into a single, scalable file system.  
Each NFS server is essentially treated as an object store.  New servers added to an NFS^2 system 
merely add more object storage—they are not bound to a particular location in the namespace.  Clients 
accessing the NFS^2 file system need not be aware when new NFS servers are added or removed from 
the system.  The system takes its name from the fact that NFS is being used “on top of” NFS—the NFS 
protocol is being used to maintain object stores, and these object stores are combined into a single 
distributed file system that is exported via the NFS protocol. 

2 Architecture 
Figure 1 shows one possible configuration for an NFS^2 file system. 
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Figure 1: An NFS^2 File System 
 

 
Storage partitions, Pi, are exported to the other parts of the system via standard NFS servers, Si, also 
called partition servers.  For scalability of the individual partitions/servers, intermediate servers can be 
introduced between the clients and servers.  The intermediate servers accept NFS requests from the 
clients, and transform these requests into one or more NFS requests to the partition servers.  
 
The intermediate servers perform another important, and powerful, function.  Each partition server is 
used as an object store, but some entity must choose which partition is used for the creation of a new 
object.  In the trivial case, this placement policy could simply be round-robin.  A slightly more complex 
placement policy could choose a partition server based on resource balancing—choosing the partition 
server with the most storage available to balance storage resources, or choosing the partition server 
experiencing the least CPU load to do CPU load balancing.  Even more complex placement policies are 
possible. For example, if one of the partition servers is a slow, legacy machine, and there is some 
knowledge of data access patterns, less-frequently-accessed data may be placed on the slow machine.  
This concept could be extended to integrate tertiary storage into the NFS^2 file system. 
 
We describe the architecture under the assumption that the intermediate server translation functionality 
and placement policy are embedded in the partition servers and that clients issue requests directly to the 
partition servers.  An implementation based on this assumption would retain most of the benefits of the 
complete system (possibly sacrificing some ability to scale with single-file “hot spots”), but would also 
have some beneficial simplifications (e.g., reduced leasing overhead, fewer network hops, etc.). 
 

3 Design Considerations 
The most important concept behind the construction of the NFS^2 namespace is the cross-partition 
reference.  A directory residing in one partition may have children (files or directories) residing on 
another partition. 
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There are a couple of alternatives for implementing cross-partition references in NFS^2.  Directories in 
most on-disk file systems are implemented as “files,” however these directories have implementation-
specific data and interfaces.  If we are allowed to modify the NFS servers, directories can be 
implemented using regular files in the underlying physical file system.  While this adds some overhead 
when compared to using the existing directory structures of the underlying file system, there are also 
benefits.  Directory files may use a variety of data structures (e.g., hash tables, b-trees, etc.), and can 
surpass the performance of the typical linear list structure used in many systems [5].  More importantly 
for our purposes, with directory files we can extend directory entries to support cross-partition 
references, independently of the physical file systems.  To achieve the goal of using unmodified NFS 
servers, symbolic links can be used to construct cross-partition references.  We first describe the system 
in terms of directory files (for clarity), and follow this with a description of how the same functionality 
can be achieved with symbolic links.  Fault tolerance and correctness for cross-partition references, 
without using distributed lock management (DLM), are addressed in another paper [7]. 
 
Another alternative is to store directories separately from files.  Standard NFS servers are used to store 
files while separate servers are used for the namespace (either using directory files, or an alternative 
mechanism).  Cross-partition references enable this separation of the namespace from the files.  Servers 
for the namespace could be NFS servers modified to support directory files, a database, or some other 
construct.   
 
The NFS^2 file system consists of user files and directory files.  Both types of files exist as standard 
files in their respective partitions—a user file, /usr/dict/words might be represented as the file 
/abc/123 on partition P3, while the directory /usr/dict might be a file /def/xxx (containing 
directory entries) on partition P4.  An NFS^2 directory entry associates the user’s notion of a file or 
directory name with the system’s name for the file/directory, the partition where the file/directory is 
located, and any other relevant information.  For example, some entries in /def/xxx could be 
represented as: 
 
 .:/def/xxx:P4 
 ..:/yyy:P6 
 words:/abc/123:P3 
 
File handles passed to the client contain some representation of the system’s name for the object (file or 
directory) and the partition where the object resides.  This information is opaque to the client, but may 
be interpreted by the load balancer (LB) to direct requests to the correct partition server.  Alternatively, 
the partition servers could be made the sole entities responsible for interpreting file handle information.  
A request could be sent to an arbitrary partition server that interprets the file handle and may then have 
to forward the request one “hop” (O(1)) to the server responsible for the object. 
 
In the initial state, a well-known root partition server (say, P1) contains a file, e.g., “/root”, which 
corresponds to the user’s view of the root of the NFS^2 distributed file system.  The client mounts the 
file system by obtaining a file handle for the /root file as a special case of the lookup RPC. 
 
Let us consider how some operations are handled in this file system.  A mkdir request from a client 
will contain a file handle for the parent directory (pfh) and a name for the new directory (dname).  A 
switch function is used by LB to direct the request to the partition server (Px) where the new directory 
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will reside. The switch function implements an arbitrary policy for where new file system objects are 
created (e.g., all video files might be placed on a “video server,” or the switch function may chose the 
server with the most available capacity).  Px creates a new file representing dname that has the name 
dname′ in the physical file system served by Px.  Px then issues a request to the partition server 
responsible for the parent directory, Py (extracted from pfh), to add a directory entry: dname:dname′:Px 
to the parent directory file (contained in pfh).  If an entry for dname already exists, the operation is 
aborted and dname is removed from Px.  Otherwise, the new directory entry is added to the parent 
directory file and the operation completes. 
 
The communication between Px and Py could be implemented using the standard NFS and lock manager 
protocols.  Px first locks the parent directory file, and checks for the existence of dname.  If no entry for 
dname exists, it can issue an NFS write request to add the entry to the parent directory file.  The 
directory file is subsequently unlocked.  Alternatively, this communication could take place via a simple 
supplementary protocol that would allow the locking to be more efficient—a single RPC is sent to Py, 
which then uses local file locking for the existence checking and update, and returns the completion 
status. 
 
File creation is essentially identical to mkdir. 
 
The read and write operations are trivial (referring to the definitions from Figure 1): 
 

write(fh, data, offset, length): 
 

Ci sends the request to LB. 
LB looks into fh and directs the request to the appropriate Sj. 
Sj issues a local write call to the file specified in fh. 

 
Read is similar. 
 
To construct cross-partition references with symbolic links, we can build an NFS^2 cluster as a proof-
of-concept as follows.  First, each partition is assigned a name (assume Pi, as in Figure 1).  The NFS 
servers then mount all partitions into their local namespace at locations /P1, /P2, etc. using the standard 
mount protocol.  Now, a cross-partition reference is created by making a symbolic link that references 
the physical file through one of these mount points. 
 
For the example: 
 

words:/abc/123:P3 
 
An underlying file, /abc/123, contains the data for the file, and resides on partition P3.  The 
namespace entry words is a symbolic link in its parent directory with the link contents: 
/P3/abc/123.  It is important to note that we are talking about systems on the scale of a cluster file 
system, so the cross-mounting does not involve a “huge” number of servers.  An extension to this work 
[5] looks at expanding the architecture to a global scale. 
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4 Future Work 
There are several areas requiring further investigation.  The performance of the architecture in its 
various possible incarnations (the symbolic link version, the directory file version, and others) must be 
studied. 

We also want to investigate the potential uses and performance implications of directory files.  
Directory files were conceived for the NFS^2 architecture to address the problem of providing a single 
directory structure over diverse underlying file systems, and the need for an easily extensible directory 
structure.  Such benefits may be useful for other file system research.  Also, because directory files 
allow the directory structure to be flexible, they can be used to investigate alternative data structures for 
directories, alternative naming schemes, new access control mechanisms, and new types of information 
that might be associated with files. 

Due to the structure of cross-partition references, object-level migration should be relatively straight- 
forward in NFS^2.  Migration and replication are two more areas requiring further research. 

5 Related work 
There has been a significant amount of research and product development in the area of cluster file 
systems [2,4,8].  Most are based on principles established in the VAXclusters [2] design.  These 
systems use distributed lock management to control access to shared resources, which can restrict their 
scalability.  NFS^2 partitions resources to eliminate DLM [5,7]. 

Frangipani proposed one of the most scalable DLM solutions in the literature [8]. System resources are 
partitioned into logical volumes [3] and there is one DLM server dedicated to each volume. This 
requires using two levels of virtualization: virtual disk and file system. NFS^2 resembles Frangipani in 
its partitioning of the storage resources for improving contention control. However, NFS^2 uses one 
level of virtualization allowing decisions for resource utilization and file placement to be made at the 
file service level. Also, cluster file systems, including Frangipani, depend on their own, proprietary 
physical file system. NFS^2 is a protocol-level service and can leverage diverse file systems for optimal 
content placement and delivery. Nevertheless, NFS^2 is complementary to cluster file systems—a 
partition can be implemented as a cluster file system and can be integrated into a broader file space. 

Slice [6] is a system that also uses a partitioning approach, similar to NFS^2.  Slice’s file placement 
policies (small versus large files and a deterministic distribution within each class of files) are 
implemented in µproxies—modules that forward client operations to the right partition, operating at the 
IP layer. To make placement decisions, µproxies have to maintain a view of the server membership in 
the system. In case of reconfiguration, the new membership information is diffused among the (possibly 
thousands of) µproxies in a lazy fashion. As a result, resource reconfiguration in Slice is coarse-grained; 
also, file allocation is static for the duration of an object’s life. In comparison, NFS^2 can extend the 
traditional file system namespace metadata to achieve highly flexible and dynamic file placement and 
resource reconfiguration. However, this requires extensions (even if minor) to the client access protocol. 
Slice’s µproxy idea could be used to transparently intercept client-service communication and redirect it 
to the appropriate partition server. In that case, µproxies will not need to maintain distribution tables; 
instead, they will interpret the contents of the (opaque to the client) file handles to retrieve the location 
of the server for each client request. 
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6 Conclusions 
NFS^2 provides a mechanism for uniting NFS servers under a single namespace.  It simplifies 
management of multiple NFS servers by providing access to all servers through a single namespace (no 
need for multiple client mount points), and by providing a transparent mechanism for the addition of 
new servers as the system grows. 

This system avoids distributed lock management, which has been a limiting factor in the scalability of 
cluster file systems.  NFS^2 supports heterogeneous physical file systems within the single namespace, 
whereas other systems have relied on their own proprietary physical file systems.  Support for arbitrary 
placement policies to place files on certain servers allows a great deal of flexibility, including 
placement of files on servers optimized for a given file’s content type, load balancing, storage 
balancing, and others. 
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Abstract

The ability to move 10s of TeraBytes of data in reasonable amounts of time are
critical to many mass storage applications. This paper examines the issues of high
performance, high reliability tape storage systems, and presents the results of a 2-year
ASCI Path Forward program to be able to reliably move 1GB/s to an archive that can
last 20 years.

This paper will cover the requirements, approach, hardware, application software,
interface descriptions, performance, measured reliability and predicted reliability. This
paper will also touch on future directions for this research.

The current research allows systems to sustain 80MB/s of incompressible data per
Fibre Channel interface which is striped out to 8 or more drives. A RAIT system looks
to the application as if it were a single tape drive from both mount and data transfer.
Striping 12 RAIT systems together will provide nearly 1GB/s to tape.

The reliability is provided by a method of adding parity tapes to the data stripes.
For example, adding 2 parity tapes to an 8-stripe group will allow any 2 of the 10
tapes to be lost or damaged without loss of information. An interesting result of this
research is that the reliability of RAIT with 8 stripes and 2 parities exceeds that of
mirrored tapes even though 8 mirrored tapes requires 16 actual tapes and 8 data tapes
plus 2 parity tapes only requires 10 actual tapes.

Keywords: RAIT, High Performance, Archive

1 Introduction

This paper describes the RAIT system as designed for the US DoE as a part of the ASCI
program. This system is designed to facilitate the long term archive of large quantities of
information in the face of potential media failures.

The requirements of the project are three fold,

� Ensure the reliability of large archives
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� Compatible with the existing applications

� Transfer the data at a high data rate

The reliability of tape varies from manufacturer to manufacturer. At STK, our high
reliability 9840A tape devices have shown to have an average reliability of one permanent
read error every 20TB of data read. While this is significantly better than some other
vendors, this error probability is not zero, and can never be.

A probability of a read every every 20TB with a 20GB cartridge, means that a cartridge
can be read 1000 times between errors. In general, this is not a significantly high number,
but when combined with large multi-volume datasets (files that span and/or stripe out to
many cartridges), the effects are multiplied.

For example, a 3 TB backup to 9840A with 1.5:1 compression will require 100 car-
tridges with a native capacity of 20 GB. Simply because of the number of cartridges in-
volved, there is a 1 in 10 chance that there will be a permanent error in writing or reading
the data. Since any error destroys the backup or restore operation, the results are catas-
trophic to the data.

2 Other Methods

For completeness, we mention other RAIT systems and documentation.
First, although somewhat dated, the Storage FAQ [1] discusses the general issues of

RAIT and several vendor offerings. For commercial hardware offerings we find Ultera
[10]. For software offering we find Computer Associates [9].

In addition, many backup companies offer striping solutions, these include IBM’s HPSS,
Veritas and Legato [8, 11, 12]. These striping solutions can provide the performance that a
RAIT system provides, but does not add additional data protection. When using a striping
solution care needs to be takes because striping multiplies the probability of problems. Our
system focuses on solving the robustness problem of stripes tape making the result more
reliable than a single tape drive.

This paper is focused on the data protection and transparency of a full virtualized RAIT
system. We use the term “full virtualized RAIT” to mean a system that completely hides
all aspects of the RAIT system from the application. The application only sees a single
tape volume with a single volume serial number. The application issues a single ACSLS
tape mount and transfers data to a single tape drive [4, 2, 3].

3 Approach

If we compare RAID to RAIT, they are very similar except that tape is a removable media.
We have accomplished RAIT by adding parity (as in RAID), but we have extended this
to virtualize the removable media and to provide additional redundancy beyond the single
parity of RAID.

The approach that Storage Technology took for the ASCI RAIT project is to virtualize
the entire tape operation. By “virtualize” we suggest that the application’s view of the
operation need not be in full agreement with the reality of the operation.
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In this system, the application thinks that it is mounting, writing or reading a single
volume from a library. In reality, the “virtual volume” does not exist and another group
of real cartridges contain the actual information and additional redundancy which contains
what the customer actually gets when the data is read.

The reality is that the single virtual tape mount may have resulted in up to 10 or more
real tape mounts, and the data that was transfered to the single virtual drive will have parity
added and spread to all the real drives.

In RAID-5, there is a single parity drive. Many customers have experienced multiple
failures on a single RAID stripe. In RAIT, multiple parities are created so that if there are
any multiple failures (up to the number of parity tapes) the data will be intact.

Just like RAID where the application sees no difference between a RAIT controller
and a non-RAID controller, the application that is requesting the RAIT tape mount and
writing or reading the data has no knowledge of the reality. In general this will allow any
application that reads or writes tapes to be able to write RAIT.

3.1 Hardware

All hardware RAIT Systems are designed to interpose a device between the host and the
physical tape library and drives. The device presents a virtual image of the virtual tape
and the other deals with “reality”. The STK device has 2 basic parts; a mount proxy and a
parity generation/checking data path.

3.1.1 RAIT Proxy

The virtual-to-real tape mount operations are accomplished by the RAIT proxy. This is the
device that understands the mapping between the virtual volumes and the real volumes. It
also manages the creating of virtual tape pools, reconstruction pools, and control of data
path.

The RAIT proxy has a database that contains the persistent information necessary to
associate the mapping of virtual volumes to the real physical cartridges. This is critical so
that applications that use the virtual volumes are hidden from this fact. This database is
mirrored to multiple locations and backed up. In addition, to aid in the transportation and
introduction of RAIT groups into other RAIT systems, and to act as a final fall-back to
ensure that this information can not be lost, this information is also written onto the tapes
as meta-data which is hidden from the user.

From the application point of view, it requests a mount from what looks like a standard
STK ACSLS mount service. This single volume that the application requested is translated
by the RAIT proxy to real volumes, and these real volumes are mounted.

This is a valuable feature in that it allows applications that only know about ”normal”
tape volumes to take advantage of RAIT. This completely parallels RAID where the client
hosts have no knowledge that the device is RAID.

Once the mounts are complete, the RAIT proxy initializes the data paths with infor-
mation on where the tapes are mounted, the number of data stripes and the number parity
stripes.

67



3.1.2 Data Path

Figure 1: Striping data

The data path stripes the data and creates or checks the multiple parity stripes. Figure
1 graphically shows the representation of how the data is striped and parity calculated.

In this figure, the data is described as a block of J words and is striped into I horizontal
groups. An additional prefix and suffix are added before and after and then the parities
are added above and below. In this case there are 5 parities, they are -2, -1, 0, 1 and 2.
There are no inherent limit to the number of parities. These parities are described by their
row/column slope.

The prefix and suffix contain zeros so that the end-cases of parities which extend be-
yond the start or end of the user data will have deterministic results. These zeros do not
really exist and are not stored on the media, but are included here to illustrate the parity
construction.���

calculation is simply the vertical line through the horizontal data stripes. This XOR
of the data is stored in the third from the bottom parity stripe. The other parities go through
the data and then are stored in their respective stripes.

You will also notice that the parities (other than
���

) are longer than the data. This data
is necessary to “bootstrap” the correction function, to keep the blocks independent. This
additional data is stored on the tapes. This does not represent a significant lengthening of
the parity data.

���
has an additional length of � ��� 	 words. If the blocksize of the tape is 1

MB using 32 bit words on an 8 way stripe, this will result in a 0.003% increase in the length
of the parity blocks over the data blocks. Since tape is a variable length block device, this
is not a significant factor.

An alternative (and a formal) description; a block of application data that is sent from
the host is divided into I stripes. Those stripes are sent to the parity hardware to create
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multiple linearly independent parity stripes.
The parity generation is accomplished by the creation of vertical and various cross par-

ities. Each of the parities
��


are taken in order from a list ���������������������������������� ��!"!"!�# .
The data is described as a word $�%'& ( where ) is the stripe number and * is the offset.

��
 & (,+
-.
%0/21 $3%'& (�45%




Where if $ � & 6 is out of bounds, it is assumed to be 0.

3.1.3 Variable Configuration

The configuration of the RAIT volume is selectable. The volumes can be simply defined
as N+P where N is the number of data stripes and P is the number of parities.

An optional, and more exact description can be N+(P1,P2) where N is the number
of data stripes and P1 and P2 describe the number of parities when failures during write
operations are allowed. In this case, P1 is the total number of parities desired and P2 is the
minimum number of parities that must be present for the write to be successful.

A simple example: 6+(2,1) will mean that a write of a volume starts out with 8 devices
and that during the creation, one can fail and the overall write will be signaled to the host
as being good. P2=1 specifies that if there is not at least 1 parities written at all times, then
the host will be notified that the write operation has failed.

3.1.4 End of Tape Operations

As data is written, the first real tape device that reaches end-of-tape signals an end-of-tape
to the application that this virtual volume is now full. Many years ago, hosts needed to
know how many bytes can be written on a tape device. Modern host software assumes that
data sensitive compression is occurring on the tape device and no longer needs to know how
long a tape is anymore. Programs today simply write data until the tape says “enough”.

Before the data is written out to the drives, it needs to be rotated across the drives
because the parities are not as compressible as the user data. Parities are less compress-
ible because when two compressible pieces of data are XORed together, the result is less
compressible.

Care must also be taken to ensure that the parity stripes (less compressible) are not
written to separate tapes from the (more compressible) user data. Failure to do so will
result in the parity tapes always getting to end-of-tape first thus wasting the compression
on the data tapes. This is solved by rotating the data and parity stripes over the complete
N+P group.

3.1.5 Reconstruction

To eliminate as many errors as possible, we leave all the drive’s error recovery on at all
times. This means that all the data integrity features of the device are left enabled. On 9840
this means that Read After Write and full ECC are enabled.
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If data can not be read or written correctly the drive notifies the RAIT controller. All
retries are used to try to make sure that this is not a transient error.

One important side effect is that, if the data shows up and the drive says there was no
error, it can be assumed to be correct. Conversely, if there is an error on read, we can just
assume that the data will never be readable and treat that block as missing. Since we know
which block is missing, then any one of the parities can be used to correct that stripe.

For instance, if a data stripe is missing and P0 is available, the simple parity of the valid
data stripes and the parity is the missing data stripe.

Multiple parities are more complicated. For example, if there are 3 missing data stripes
and three parities (P0, P1 and P-1) we perform the recovery as follows. Starting with the
“correction line” as the first word of each stripe we notice that the top missing stripe can be
corrected with the parity stripe going from left bottom to right top. This is because all the
words to the left are good (because the prefix is known to be zero) and all words above the
top missing stripe are (by definition) not missing. When we are at this case, we can correct
the first word of the top missing stripe. We then correct the bottom missing word in the
same manner with the other diagonal parity. At this time, there is one remaining missing
word and one remaining parity (P0). We can simply use P0 to correct the remaining word.
We can them move the correction line to the right by one word.

Subsequent words within this block can be corrected the same way because as we iterate
this from left to right, all words to the left of the correction line have been corrected. This
simple scheme can be enhanced to any number of errors as long as there are enough parities.
When there are more than 3 errors, then the correction line is no longer straight.

These errors correction techniques are discussed in [6] as a “burst erasure channel”. A
burst erasure is defined as an event where, if there is an error detected, an entire burst (block
in our case) is erased (in our case simply not returned from the device). To recover from
an error, we simply use the parity to recover the known bad data stripe. IBM introduced
the concept of “Crossed Parity”[7], and patents for further extensions to this have been
proposed by the authors.

3.1.6 Reconstruction performance

Since this is a burst erasure channel, if all bursts (stripes) arrive without the drive saying
there is an error, then we can assume there are no errors and simply reconstruct the user
data block without employing the parity hardware at all.

In the case where a single stripe is missing, the parity of everything but the missing
stripe is the missing stripe. We can employ the parity hardware to create the syndrome in
the same time as we took to create the parity in the first place. This allows us to correct a
single missing stripe with no performance penalty.

When multiple errors occur, we can use the parity hardware to create partial syndrome
for each word and then do the word by word iteration in software.

3.1.7 Additional Data Integrity checks

Provided that all the parity is not needed to correct missing data stripes, the controller can
do additional data integrity checks of the data.
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3.2 Application software

In general, the application software does not need to understand the operation of the virtual
tape devices. The initial customer uses HPSS and the testing of HPSS is accomplished
without change to HPSS. Other software such as Veritas or Legato Backup software oper-
ates the same whether the tape device is RAIT (virtual) or real.

The one exception is in the area of job scheduling. If the job scheduling system manages
the tape drive allocation to ensure that there are adequate resources, this needs to take
into consideration that certain tape mounts will not require a single drive, but may require
multiple drives. This has been added as a feature to HPSS.

3.3 Performance

The performance of the RAIT system is limited by the speed of the data channel, parity
hardware and tape devices themselves. At this time, a 100MBytes/s Fibre Channel is used
to connect to the host devices. Fibre Channel can be reliably utilized at 80% of capacity or
80MBytes/s. The parity generator hardware operates at more than 100MBytes/s so that it
is not a bottleneck. The devices used are STK 9940 tape devices that have a raw speed of
9MB/s. This number is increased by the compression factor. If the user data is compressible
2:1, then the performance of the tape device will be 18MBytes/s.

A 5+2 RAIT system with 9940s operating with 1.8:1 compression can sustain 80MBytes/s
as a single virtual tape device being striped out to 7 physical tape drives.

3.4 Reliability

It has been shown that STK 9840s have a read error about every 20TB of data with a
cartridge size of 20GB. Since this is 1000 reads of a single cartridge, a very simple model
is to assume a probability of error of 7 +8�9� 4�: per tape operation and unrelated failures [5].

If we assume that a tape operation is a mount and unmount of a tape regardless of the
amount of data transfer, then this will be a conservative estimate and the actual reliability
should be significantly better than this.

The probability of at least one error for any group of tapes (stripes or just long volumes)
is the number of volumes ( ; ) times the error 7�; . A 100-tape volume has an error probability
of �9� 4<1 .

A single RAIT virtual tape volume ( = ) with one parity per 6 volumes (6+1) will only
fail if 2 tapes fail. A simple model of this is the probability of 1 of 6 failing and then 1 of 5
remaining fail or =9>@?21A+CB�7EDF7 or =�>@?21G+H�JIK�9� 4�L .

A (6+2) system will only fail if 3 tapes fail. This is the probability of 1 or 7, 1 of 6 and
then 1 of 5 remaining fail or =9>@?21A+HMF79B�7EDF7 or =�>@?ONP+Q��!"�RIS�9� 4�T .
3.4.1 Striped RAIT Systems

Since it is still possible for the application to stripe the data, the application can be used to
stripe the data over multiple independent RAIT systems. For instance, 4 RAIT groups at
80MB/s will sustain 320MB/s or more than 1TB/hour.
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A striped RAIT system U -wide will have an overall reliability of U�= . In the case of
13 (6+2) RAIT units wide the probability of failure is U�= or ��!VMWIX�9� 4�> . This shows that
the reliability of a 1GigaByte/s striped RAIT has an error probability of less than two in a
million probability of data loss due to unrelated failures.

3.4.2 Other Failure Modes

The analysis in this paper focuses on unrelated drive, and media failures. The performance
of the system in the face of related failures at the controller level is not considered. Gen-
erally, failures at the controller level do not effect the stored data, which can be read or
written once the controller is repaired.

3.5 Future directions

Storage Technology Corporation is in the process of creating a Commercial Off The Shelf
device for worldwide availability. STK is also creating a ”mirroring” capability so that
tapes can be created simultaneously at multiple locations with the same kind of single
virtual device image as RAIT. The performance of the system is also expected to increase
as customer systems and tape devices become faster.

3.6 Conclusion

This paper has discussed the method of creating RAIT. The primary goal of reliability is ac-
complished by adding parity information to the virtual volumes. Performance is increased
by striping the data. Further performance can be achieved by striping RAIT systems. In
the future this capability will be commercially available.
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Abstract 
 
A conceptual architecture study is under way to address the problem of getting the most 
scientific value from the large volumes of Earth and space science data that NASA 
expects to accumulate in the future. This involves efficient storage and access, but goes 
beyond that to facilitate intelligent data understanding and utilization through modeling 
realistic virtual entities with predictive capabilities. The objective of the study is to 
formulate ideas and concepts and to provide recommendations that lead to prototyping 
and implementation in the period from 2010 to 2020.  The approach consists of the 
definition of future scenarios and needs for data usage in applications (in consultation 
with scientific and applications users), projection of advances in technologies, and an 
abstraction of an intelligent archive architecture.  Strategic evolution is considered in 
various areas such as storage, data, information and knowledge management, data ingest 
and mining, user interfaces, and advances in intelligent data understanding algorithms.   
 
1. Introduction 
 
NASA’s collections of Earth science data have more than quadrupled in volume since the 
launch of the Terra satellite in December 1999.  At the end of September 2001, NASA’s 
Earth science archives contained over 1,000 terabytes of data and are currently growing 
at the rate of about 2.8 terabytes per day.  Other agencies (e.g., NOAA and USGS) also 
have large and growing archives of Earth science data.  The volumes of Earth science 
data held by NASA, NOAA and USGS are expected to exceed 18 Petabytes by 2010. 
Significant increases are expected in the data volumes in space science as well. For 
example, planned synoptic sky surveys in astronomy could produce 10 Petabytes data per 
year.  
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In addition to the large data volumes, there are multiple challenges in managing and 
utilizing them: 
 
• Data acquisition and accumulation rates tend to outpace the ability to access and 

analyze them.   
• The variety of data implies a heterogeneous and distributed set of data providers that 

serve a diverse, distributed community of users.  
• Human-based manipulation of vast quantities of archived data for discovery purposes 

is intellectually overwhelming and certainly cost prohibitive.   
• The types of data access and usage in future years are difficult to anticipate and will 

vary depending on the particular research or application environment, its supporting 
data sources, and its heritage system infrastructure.   

 
Increased hardware capabilities partially mitigate the data access problem.  However, 
adding “intelligence” to the data management and utilization process is essential to 
automating the end-to-end data lifecycle in order to reduce the burden on data producers 
and archivists and provide the greatest value to the nation for the data collected. Thus, 
Intelligent Data Archives here are viewed not just as a set of permanent repositories of 
data, but also as a suite of services that facilitate the use of data and deriving information 
and knowledge from them.  Therefore “intelligence”, in various embedded roles, means 
the computational transformation of bits into information and knowledge (processing 
sensory data into models), the ability to automatically act appropriately to complex 
dynamic conditions (operations automation), and ability to facilitate human interactions 
with digital resources (semantic management). 
 
A conceptual architecture study is under way to address the problem of efficient access to 
and effective utilization of the large volumes of data that NASA expects to accumulate in 
the future. The study is sponsored by NASA’s Intelligent Systems Program, and 
specifically the Intelligent Data Understanding technical area within the program.  The 
intention of the study is to develop ideas and concepts and to provide recommendations 
that lead to prototyping and implementation in future years.  As such, it is not constrained 
by the need for operational implementation in the near future (e.g., two to five years).  
 
The approach to this study consists of the characterization of future scenarios and needs 
for data usage in applications (in consultation with scientific and applications users), 
projection of evolutionary/revolutionary advances in technologies, and an abstraction of 
an intelligent archive architecture.  These steps will lead to a strategy toward the 
formulation and development of conceptual architectures for intelligent archives.  The 
analysis is used to identify what kinds of intelligent processes are both desirable and 
feasible, and determine where their application might most effectively drive down costs 
and enable new applications and research, given anticipated advances in technology.  
Strategic evolution is considered in various areas such as storage, data, information and 
knowledge management, data ingest and mining, user interfaces, and advances in 
intelligent data understanding algorithms.  
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The following section provides a brief discussion of the preliminary abstracted 
architecture obtained using this approach.  Section 3 presents a description of scenarios 
and user needs.  Section 4 covers projections of evolutionary and revolutionary changes 
in technology.  Section 5 provides a set of recommendations in the form of a road map 
leading towards intelligent archives supporting intelligent data understanding and 
utilization. 
  
2. Abstracted Architecture 
 
The abstracted architecture represented here is defined without regard to distributed or 
centralized nature of implementation and is considered purely from the point of view of 
the functions that need to exist to support the types of usage scenarios analyzed in section 
3.  It is possible that with a broader set of scenarios, we will need to identify additional 
functions in a later version of this abstraction.  The functions of an intelligent archive are 
more stable than the architectures and technologies used to implement them.  By 
abstracting elements and processes into functional elements, we can explore application 
strategies of technologies and system resources for future intelligent archives.   
However, it is first useful to provide our definitions for data, information and 
knowledge, as these entities are key to the abstraction of the architecture.  These are not 
general definitions, but rather somewhat specific to the domain of scientific research. 
• Data:  output from a sensor, with little or no interpretation applied. 
• Information:  a summarization, abstraction or transformation of data into a more 

readily interpretable form. 
• Knowledge:  a summarization, abstraction or transformation of information that 

increases our understanding of the physical world. 
 
Future intelligent archive architectures (see Figure 1) manage these entities with such 
functional elements as: 
 
• Models and Intelligent Algorithms  

- Consist of models of sensors, resources, data, information, knowledge, and 
application domain entities (e.g., farm) 

- Include models that exist at multiple levels, ranging from detailed sensor models 
to models of an entire application domain (e.g., global models in the case of Earth 
science) 

- Support human understanding of the objects and processes that make up a virtual 
digital entity and allow users to update the knowledge about the domain as new 
discoveries are made 

• Flow and Feedback Loops  
- Control performance of all other functional elements 
- Include mechanisms that construct, organize, store, update, manage, and provide 

essential operational services 
- Support self-optimizing operations 

• Virtual entity 
- Consists of a representation of the data, knowledge, and processes involved in an 

application domain 
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- Provides a context for ingesting, organizing, and managing data and information 
for the real world entity it represents  

- Allows interrogation of past, present, and projected future events, as well as 
“what if” analyses 

• Intelligent information and knowledge extraction  
- Facilitates the transformation of data into information and useful knowledge 
- Automates mechanisms that extract meaning from data and therefore leverage the 

value of all data in the process 
- Supported by models in the knowledge base, which provide a basis for 

understanding the data 
• Intelligent data production, management and archiving  

- Consists of production, persistence, and active management of valued massive 
data assets   

- Automates efficient data management mechanisms supporting knowledge-
building enterprises in the face of an overwhelming “tidal wave” of data  

- Must dynamically manage high volume inputs from a diversity of observational 
sensors, converting them into quality usable data products 

- Manages storage close to sensors such that data can be processed locally and 
passed on to the virtual entity as needed 

• Intelligent sensors  
- Are responsible for observations and measurements taken from nature and are the 

raw ingredients for data   
- Operate from various platforms such as satellites, aircraft, balloons, and in situ 

constructs   
- Have capabilities for performing autonomous functions and also interact with 

other sensor systems and external functional elements 
- Include storage, management and processing resources that are part of the overall 

archive 
- Are modeled in the context of the knowledge base and can support collaborative 

operation by supplying processing and storage resources when they are not 
needed locally 

- Are expected to become an integral part of an archive as the architecture becomes 
more distributed.  Here the archive would control sensor data collection based on 
data needs and would use sensor resources to perform its functions 
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Figure 1:  Abstracted Architecture for Intelligent Archives 

 
Using this abstracted architecture to construct an intelligent data system would require a 
number of design decisions regarding how these elements and entities are represented, 
such as whether data are represented as bit streams, files, database records, or some other 
entity.  Other decision points concern the relationships among entities, infrastructure to 
support and connect the various elements, and various optimization schemes.  There is 
much ongoing development in the area of data system intelligence today, such as grid 
computing, distributed data mining, mobile agents etc.  However, because one of the 
main goals of the abstracted architecture in this study is to aid future research 
programmatics, the key challenge is to devise an architecture that can be "mapped" into 
ongoing research and development without being limited to a single architecture 
evolutionary path. 
 
3. Scenarios and User Needs 
 
We are using a scenario-based approach to the development of futuristic conceptual 
architectures that enable intelligent data understanding of massive data volumes.  
Scenario-based approaches are used to drive clear and complete pictures of end-to-end 
interrelationships among data and information, consumers, data providers, value-added 
information services, data archives, and data acquisition missions [1,2].  Also, scenario 
development uncovers a range of requirements for services and capabilities that can be 
mapped to existing and future technology application. Consequently, forward looking, 
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tangible and imaginative Intelligent Data Archive (IDA) system application scenarios can 
be factored into an architectural framework with descriptions of supporting technology. 
 
The scenarios are oriented to an end-user perspective.  Scenario descriptions identify 
"actors" or involved stakeholders and illustrate dependencies among them within an 
enterprise context.  By extension this helps to clarify requirements for corresponding 
system components and in identifying challenges to be addressed.   
 
Applications scenarios lead to requirements, requirements have implications on 
technology, and advances in technology affect the evolution of applications.  By 
observing this feedback process, we can characterize several futuristic scenarios.  In 
addition, such a strategy allows the architectural process to adapt quickly to new and 
evolving scenarios and technologies. 
 
A variety of contexts for possible scenarios have been identified with which to explore, 
understand, and refine requirements for the IDA architecture. Examples of candidate 
scenario contexts are: 
 

• Ecological forecasting 
• Precision agriculture 
• Natural events and hazards (e.g., volcanoes, earthquakes, hurricanes, floods, fires) 
• Skilled (10 – 14 day) weather forecasting 
• Space weather 
• National Virtual Observatory 

 
Of these, in the initial phase of this study, we have used the precision agriculture and 
precision weather forecasting contexts and developed two scenarios. 
 
3.1   Precision Agriculture 
 
The precision agriculture scenario is concerned with the scope and parameters of a farm 
employing high-resolution Earth science data.  The farm, which constitutes the virtual 
digital entity in this scenario, is characterized as a relatively small spatial area 
(considered in acres) for agricultural products suited to regional ecological, weather, and 
growing constraints.  
 
The “digital farm” concept interrelates ideas about digital technology, digital information, 
GIS, and human-machine interfaces.  We explored potential future requirements and uses 
of quality high-resolution geo-spatial data employed in precision agriculture. The 
information resources needed represent the consequence of interoperating services, value-
chain processes, automation, and filtering of data of specific relevance to the farmer.   
 
Information-intensive support services helpful for crop planning, cultivation and 
harvesting include current conditions monitoring, histories and time series studies, 
trends/risks analysis, prediction, and forecasts, “what-if” investigations, and outcome 
comparisons.  Detailed information about land, weather, water, agriculture markets, prior 
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yields, agri-chemical options, seeds, etc. are useful for crop planning and planting.  High-
resolution information is helpful to monitor, assess risks, and make decisions about 
appropriate interventions to maintain crop health.  Similarly, to maximize yields, 
decisions about harvest timing require information about current and future conditions 
(e.g., local weather, soil moisture, crop maturity).  Remotely sensed information about 
farm assets, including information collected from the farm about outcomes of plans, 
cultivation techniques, and harvests, is integrated within a digital farm for long-term use. 
In all cases it is important that the information be provided to the end-user with 
confidence estimates. 
 
To make sense of all this information, the digital farm concept includes a digital assistant 
that works on behalf of the grower and is very intuitive and simple to use.  The digital 
assistant is available from any interface (workstations, mobile devices) from within the 
house, farm buildings, vehicles, or even the combine.  Interaction with the digital 
assistant can be conducted by natural language either via voice or keyboard.   
 
The digital assistant can interpret, broker, and fulfill requests for information and services 
from the virtual entity both dynamically and autonomously.  In this scenario, the virtual 
entity is a digital wheat farm that contains encyclopedic farm-relevant information 
ontologically, spatially, and temporally organized.  The digital farm keeps its information 
stores about soil, crop, weather, and moisture conditions constantly updated.  It interfaces 
with external inputs of data and information sources as well as with farm-specific sensor 
inputs.  These functional interfaces are crucial to pooling farm-relevant data from raw 
data sources such as primary archives and agricultural services. 
 
The digital assistant can produce different views of this information by summoning an 
array of functional services.  These services can be invoked and combined with an 
existing farm state model to produce a virtual 4-D representation of the entire farm that 
the grower can inspect from his or her office or combine cab.  The virtual farm serves as 
an interactive reference of farm-specific assets integrated with historical, current, and 
modeling information.  Views of the farm can be summoned to within a square meter 
with variable time series.  Types of information range from historical to actual current 
conditions to what-if scenarios cast into the future.   Because the grower’s digital farm 
can “learn” from his or her queries and interests, the content and services it provides 
adapt with change and specificity over time. 
 
Most of the machinery on the farm also interacts with the digital farm information 
services.  Autonomous and semi-autonomous machines that plant, cultivate, and harvest 
crops are precisely controlled with a combination of GPS, distributed functions, and data 
from the digital farm.  Optimal applications of seeds, fertilizers, and chemicals can be 
controlled and recorded via wireless digital farm services.  Similarly, data taken from the 
field during cultivation and harvesting can be relayed to the digital farm as input for 
archiving and further use.  Together, the estimated levels of data usage in this scenario 
approach 650 GB/year for a 1000 acre farm (275GB/year for subset data).  Extrapolating 
the subset data volumes to 600,000 acres of Central Valley agriculture zone in California 
implies a potential distribution of 165TB/year.   
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3.2 Skilled (10-14 day) Weather Forecasting  
 
Predicting future weather conditions over a particular region requires accurate data and 
knowledge about atmospheric forces, physical parameters, boundary conditions, and the 
interrelated nature of the atmosphere to the physical Earth system.  While future 
knowledge will remain incomplete, scientific processes and visionary methods for 
improving that knowledge promise more accurate forecasts of atmospheric behaviors as 
technologies and sensing systems evolve.  However, the accuracy of weather predictions 
tend to decay rapidly as a function of time due to the inability of prediction systems to 
compensate for noise generated by the chaotic nature of the science, a lack of precise 
initial conditions and the non-linear complexities of weather.   
 
The weather prediction scenario we considered involves testing a 4-D model of the mid-
Atlantic region of North America while studying a developing weather condition.  The 
archival system includes the forecast model and the sensor systems used as input.  The 
strategy used in the forecast scenario is to link the sensor systems with the model such 
that the archive drives the sensor data collection process. .  These sensor systems act in 
concert, as a web of connected, inter-communicating sensors ("sensor web") [3]. 
 
As the system collects data, it creates an initial forecast state that it uses at a future time 
to compare against actual sensor data.  The forecast from the model and the sensor data 
are compared, and model errors identified.  The forecast model is then corrected and a 
new future state created.  This cycle occurs periodically based on forecasting 
requirements.  Employing this closely coupled sensor model process allows short term 
and long range forecasting with minimal error.   
 
From the scientists’ perspective, planning sessions are conducted with an interactive 
visualization interface equipped with collaborative and immersive human-machine 
technology.  Team members have the option to meet virtually via their workstations or in 
one of the research center’s hypermedia tele-immersive conference rooms.  In the tele-
immersive room, the scientists plan their research forecasts by summoning a vivid 
holographic 3-D projection of the Earth, pointing to the region of interest, zooming in, 
and accessing projections of scaled real-time weather conditions.   
 
The scientists cycle through several current satellite views of the region selected from a 
list and scan each view.  Next they request views of the latest graphics and values for 
temperature, pressure, humidity, and winds superimposed over the satellite image slightly 
above the defined region on the global reference projection.  In order to assess the whole 
virtual picture of the weather condition, the team requests that the system detach the 
selected region from the reference globe and project it as a cube presenting a 3-D 
visualization of the weather conditions to an altitude of 25,000 meters.  By rotating the 
cube the researchers inspect the sensor grid sensitivities over the region from every angle.   
 
The team next decides to run one hour, one day, five day, and ten day forecasts of 
weather for this region using the current operational model, adding some custom-selected 
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inputs from a sensor array pick-list.  After a minute, the results are ready to be displayed 
in the same virtual region cube space.  The team studies each forecast display by a variety 
of interactive real-time commands (by voice, gesture, and keyboard).  They explore the 4-
D visualizations by varying the temporal resolution, zooming spatial areas/volumes to 
inspect details, requesting displays of simultaneous analysis result visualizations, and 
selecting predicted parameters for further comparative analysis.  Some team members 
perform dynamic what-if prediction scenarios comparing what the system generates with 
their own hypotheses.   
 
With this experience the team then formulates a test of their beta version model using 
insights gained from the immersive collaborative session.   Several on the team notice 
that higher resolution remote sensing values are needed in certain areas of the region to 
accurately predict future changes of the pending weather condition.  This might accord 
with the deviation of the standard model from theoretical expectations after one day.  
Furthermore, there is team consensus that coupling their beta model with selected 
components of the standard model would elucidate new dependencies and parameters 
crucial to accurate predictions.  Scientist-provided specifications for this new research 
configuration are then interpreted, translated, brokered, and automatically tasked by the 
system.  
 
In the final episode of this scenario the team studies the emerging weather phenomenon 
through virtual projections of real-time information and various combinations of modeled 
predictions.  For the modeling portion of the research, the team observes how the 
standard model self-adjusts its forecasts as a function of near-real time automated 
comparison of actual versus predicted parameters.  When the predicted varies too much 
from the actual, new initial conditions are set.  This continually keeps the predictive 
accuracy on track for the near term, but progressive adjustments of the model are 
required.  The standard model in this scenario has intelligence applied so it monitors its 
own performance.  With access to a knowledge base, the model may also pinpoint 
components to be modified either automatically or by human intervention.  
 
In parallel with this modeling activity, the team custom-configures its beta version model. 
The team includes a system request that re-tasks the sensor web to gather highly detailed 
inputs for a critical area of the study region, to generate new forecasts. The sensor web 
schedules and promptly complies with the request, providing critical detailed data for the 
beta model to process.   
 
Ten days after the start of the research event, the team is able to conclude from their 
findings that new knowledge was gained about the rare weather condition.  Furthermore, 
comparisons of performance and outcomes between the beta and standard models 
identify strong points in the beta model responsible for improving the accuracy of overall 
forecasts.  Validation of these findings leads to the promotion of specific beta version 
components and two external model linkages to the standard model, adding a new 
phenomenon to the knowledge base with additional predictive power.   
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Making the above vision possible obviously involves developing new observation sensor 
systems as well as innovative techniques for data management and utilization.  It is 
anticipated that improvements to existing capabilities combined with evolving 
infrastructures and innovative research technologies can enable skilled weather forecasts 
of ten to fourteen days by 2025 (current forecast predictive skill is five to seven days) [3]. 
Skilled forecasting goals such as this require quality, mixed-resolution observations and 
data acquisition systems; very rapid processing of observations; complex data 
assimilation strategies; predictive modeling strategies and algorithms; and powerful 
technology infrastructures for archiving, distribution, and interactive visualization.  An 
initial assessment of expected optimized global data volumes covering required 
parameters, temporal/horizontal/vertical resolutions, and vertical measurement layers 
yields an estimate of about 20TB/day by 2025. 
 
 
 
3.3  Empirical Observations 
 
While futuristic scenarios project the needs for research and applications, empirical 
observations of data access and usage patterns provide a base state and historical trends.   
They also give hints on how these patterns may change in the future. The access patterns 
are a function of the requirements of various users and applications as well as the state of 
technology.  The term technology here includes both hardware and software.  For 
example, existence of faster hardware promotes the use of data mining software, which in 
turn allows different and more useful forms of access from the archives than is currently 
possible.  As visualization tools, network bandwidths, and desktop computing capabilities 
increase, new requirements may emerge in accessing archived data.   

In the initial phase of this study, we have studied patterns of users’ access at the Goddard 
Distributed Active Archive Center (DAAC) since a record exists starting from the 
DAAC’s inception in 1994.  More observations at other DAACs and other types of data 
centers would be useful to provide a broader insight to access patterns.  Some of the 
questions to be addressed by such empirical observations are: 

• Should data products be processed routinely and stored for future distribution, or 
should they be produced only when a user or an algorithm requests them? 

• For data-intensive algorithms, should the data be moved to the software, or the 
software to the data? 

• Should architectures be developed primarily based on average data access 
requirements or peak requirements, and how can peak requirements be 
characterized? 

 
A key capability implicit in the term Intelligent Data Archive is an awareness that 
extends beyond the data.  While we commonly think of this awareness in its “operational 
intelligence” context (e.g., resource management, autonomous data gathering), an 
intelligent archive should also have “scientific intelligence,” i.e., the higher-level 
knowledge that is derived from the data.  Clearly, intelligent archives that include models 
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have some higher-level knowledge about the data.  Beyond that, a wealth of knowledge is 
published in scientific journals.  Studying the connection between data in archives of 
today and the scientific knowledge derived from them will provide valuable hints for the 
design of future intelligent archives that embed knowledge with data.  This initial phase 
of study includes a “proof-of-concept” attempt at closing the data-knowledge loop using 
automated (and semi-automated) methods to link datasets from the Goddard DAAC with 
scientific knowledge resulting therefrom as expressed in publications (limited to those 
available electronically).  Some of the difficulties encountered here provide valuable 
lessons in current shortcomings in the world of data archives and electronic publication, 
which offer opportunities for future work. 

4. Technology Evolution/Revolution 
 
In the development of data and information systems over the last ten years, significant 
progress has been made in several areas.  These areas include: handling large volumes of 
data at high rates, distributed computing, archiving and distribution, data and metadata 
standards to facilitate system interoperability and provision of services such as subsetting, 
and user interfaces.   
 
In the Earth science domain, this progress is exemplified by NASA’s Earth Observing 
System Data and Information System (EOSDIS) [4] with its distributed set of DAACs 
and Science Investigator-led Processing Systems (SIPSs), the NASA-initiated federation 
of Earth Science Information Partners (ESIPs) [5], and the international Committee on 
Earth Observing Systems (CEOS). 
 
On a more general level, the Global Grid Forum and NASA’s Information Power Grid 
[6] represent efforts to develop persistent networked environments that integrate 
geographically distributed supercomputers, large databases, and high-end instruments. 
These resources are managed by diverse organizations in widespread locations, and 
shared by researchers from many different institutions. Within the Global Grid Forum, 
the Jini activity [7] is chartered to address the need for a grid framework to support both 
resource and service discovery, in an environment in which these resources and service 
providers may enter and leave the grid dynamically, and where diverse protocols are 
expected to exist. 
 
It is expected that near-term archiving systems will arise from these efforts as well as 
several commercial developments in hardware and software technologies.  We envision 
that over the longer term, such “grid” infrastructures will evolve into a finer-mesh, 
perhaps self-organizing “fabric” as computing and communications become increasingly 
ubiquitous. 
 
The evolution of (and revolutions in) technology over the last twenty-five years 
demonstrates the difficulty in predicting the technologies that may be available ten to 
twenty-five years from today.  However, a study of existing forecasts by well-known 
scholars in various areas relevant to data access and management is useful in 
conceptualizing new architectures for IDA.  
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Potential technology drivers include processors, microelectronics, nanotechnology, 
biotechnology, sensors, intelligent systems, communications, and user interfaces.  In each 
of these areas, advances are being made that will have a dramatic impact on future 
archive architectures and functionality. In the hardware technology areas, the cost per 
unit capability has been decreasing rapidly and is expected to continue to do so.  The 
implication of this on the end-to-end data management process and data utilization is that 
it enables implementation of a number of services that have heretofore been limited by 
hardware costs and encourages experimentation and advances in software techniques.  
Advances in techniques resulting from research in intelligent systems (including 
intelligent data understanding) sponsored by NASA and other organizations become 
suitable for incorporation into the overall data management and utilization process.  
 
4.1 Advances in Storage Technologies  
 
Today we are witnessing the rapid progress and convergence of the fundamental 
technologies that make up archiving: storage, computing, and communications.  
Traditionally, digital storage demands have grown at or beyond 60 percent annually. 
Over the past several years, growth has exceeded 100 percent per year for Internet and e-
commerce applications.   Data storage functions have undergone an evolutionary change 
over the past ten years, and are now commonly performed by smaller high-performance 
disk drives implementing high-availability RAID storage coupled with more capable 
archiving software.  In addition, magnetic tape technology is continuing to increase in 
capacity and speed. On the other hand, optical storage now seems more oriented toward 
the entertainment market.  Both storage area networks and network-attached storage 
(SAN and NAS), along with high-speed optical communication, have fundamentally 
reshaped the traditional storage model.  In addition, SAN and NAS archiving strategies 
have separated storage from being dedicated to any one server and refocused architectural 
strategies to implement a union of storage devices interconnected by high-speed optical 
networks.  
 
Even in the near future (i.e., the next five years), the costs per unit of computing, storage, 
and bandwidth are expected to continue their rapid decline.  The historic trend has been 
that increases in requirements have kept pace with the reductions in per unit cost to 
maintain roughly the same annual expenditures for hardware.  However, in general, the 
value of an archive system will move from the hardware to the management and 
utilization of the data. These are what an intelligent archive should aspire to do as 
performance and functionality increase, especially in a distributed architecture. 
 
Currently, NASA uses both magnetic disk storage (for on-line access to relatively 
moderate data volumes) and tape storage (for long-term storage and access to large 
volumes.)  The amount of data available on disk has been increasing as disk storage 
capacity has increased exponentially over the past ten years (over 60 percent annually 
since 1992).  Indeed, some predict that magnetic disk storage will become more cost 
effective in coming years even for large volumes, as magnetic tape densities have not 
been increasing so fast as disk.  However, while online storage capacity has increased, 
our ability to access data has not kept pace because input/output performance has only 
increased linearly [8]. Magnetic recording for both disk and tape will continue to grow at 
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about 60% annually until the physical barrier (known as the super-paramagnetic limit) is 
reached. 
 
 
4.2  Paradigm Shifts 
 
It is also expected that as a result of scientific advances or fundamental limits of nature, 
paradigm-shifting revolutionary events are likely over the next twenty-five years. For 
example, quantum mechanics will play an ever-increasing role because it involves the 
performance of all microelectronic devices and the creation of molecular and atomic size 
tools.  Today’s smallest transistor etchings span a mere 130 nanometers.  The expected 
quantum dimension limit for microelectronics is approximately 25 nanometers, where the 
laws of quantum physics allow electrons to transition across semiconductor gates even 
when the gates are closed.  In other words, the basis for all modern computing 
technologies will run into a “brick wall.”   
 
The effects of these paradigm shifts are illustrated in Figure 2. In the pre-paradigm shift 
era, we may have extensions to the architectures of today, with increases in the speed and 
ability to serve data and information to users.  However, in the post-paradigm shift era, 
the nature of the entire end-to-end system could undergo revolutionary changes.  This 
implies that in conceptualizing IDA architectures, it is useful to think in terms of 
functional capabilities and their necessary interactions and interfaces without being 
constrained by today’s limitations on the locations of such capabilities. 
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5. Recommendations and Future Work 
 
At this stage in our study, we have a set of recommendations shown in the form of a 
preliminary roadmap to move from archive organizations for traditional data access to 
intelligent archives that facilitate and take advantage of intelligent data understanding.  
This roadmap is shown in Figure 3. As shown in this figure, the steps leading to an 
intelligent archive involve obtaining a better understanding of the following sequence of 
items: 
• Current data access and archiving 
• Future data access and archiving trends 
• Future scientific applications 
• Future enabling technologies 
• Roadblocks involved in the formulation, development, and building of an intelligent 

archive 
• Costs involved in formulating, developing, and building an intelligent archive. 
 
There are several areas for further, more detailed, exploration as we continue this study: 
 
• More Scenarios 
- It is important to have sufficient scenario diversity to avoid biasing the architecture.  

Thus, we plan investigation of additional science and applications scenarios in the 
areas of space science, ecological forecasting, and natural hazards forecasting. 

 
• Specialized Technology 
- The initial investigation began with surveying general technologies, such as 

computing and networking, to determine how they might drive or enable intelligent 
data understanding.  However, there are several areas of more specialized technology, 
particularly in the area of software, which may be equally important as drivers or 
enablers.  These include areas such as IP-in-Space (enabling a seamless space-ground 
data system) as well as the various data mining, fusion and visualization technologies 
being developed as part of NASA's Intelligent Data Understanding program.  
Advances in science and modeling algorithms are another fertile area. 

 
• Further Architectural Definition 
- As the investigation of new scenarios and specialized technologies advances, these 

should allow further definition and clarification of the IDA architecture.  This in turn 
should promote further definition of the key architectural issues, challenges and 
trades, which represent an important input into research directions. 
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Abstract 
This paper will discuss the history of storage at the National Center for Supercomputer 
Applications (NCSA) over the last fifteen years from inception to a four hundred terabyte 
archive. The paper discusses supercomputing requirements, hardware and software 
configurations, and the evolution of data management at NCSA. This paper also 
discusses the strengths and weaknesses of NCSA’s different storage strategies, and gives 
a detailed discussion of the current system and how it is being evolved to meet the 
requirements of the TeraGrid computing systems, and large-scale Linux clusters. 
 
1 Introduction 
As NCSA, compute power has increased over the years, and so has the mass storage 
system to keep up with the ever-increasing rate at which data is produced.   The NCSA 
mass storage system started in 1986 with thirty-six gigabytes of disk, a dual processor 
Amdahl performing twenty MIPS, with fifteen megabytes memory, and a single network 
adapter in the form of a 1.5 megabits Hyperchannel connection.  The system has evolved 
to a single system configuration of sixteen 250MHz processors, twelve gigabytes of 
memory, three Hippi and six GigE network interfaces, and two terabytes of disk for 
overall I/O performance of two hundred megabytes per second.   
 
2 History of Mass Storage at NCSA 
In 1986, the first mass storage system at NCSA was an Amdahl running the Common 
File System (CFS) software package originally developed by LANL.  This system was in 
production from 1986 to 1991 at NCSA, and served an evolving array of supercomputers 
from NCSA’s original Cray XMP, to a Cray2, and a CRAY YMP.   Access to mass 
storage was through a CFS client running on the Cray supercomputers. The data was 
staged to the Amdahl’s disk cache, and then transferred through a proprietary protocol to 
the compute engine’s disk.   The only access to the mass storage system was through the 
Cray CFS client.   Disk space on the Cray systems was purged after jobs completed, so 
users were responsible for storing files they wished to retain.  The average file size was 
skewed by CFS’s requirement to break data into chunks of two hundred megabytes.  Files 
could not span tapes, and two hundred megabytes was the maximum that could be placed 
on the 3480-tape technology employed. All tapes were manually mounted, and redundant 
copies of every tape were made for off-site disaster recovery.  Users began in later years 
to utilize other smaller data storage facilities.  Direct access to their data was needed 
without mediation by an HSM, and then to a secondary machine like the Crays at NCSA. 
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The secondary staging was limiting, and the performance through the Hyperchannel was 
considered extremely slow for the times. User observed data rates were usually 1 Mb/s 
for a single stream, and multiple streams displayed a more dismal rate. New high-speed 
tape technologies were emerging, but the Amdahl could not be upgraded to handle those. 
The Amdahl was neither compatible with emerging tape and network technologies nor 
capable of advancing to follow on standard data protocols for data transfer.    
 
NSL UniTree and UniTree from DISCOS were researched, and thought to be good 
products, but support in a 24/7 highly demanding production environment was 
questionable.   Convex ported UniTree to their systems, and created a tuned version that 
was both faster and met NCSA’s reliability requirements.  NCSA wrote a conversion 
program for the move from CFS to Convex UniTree.  The CFS databases were converted 
to UniTree format, and the system was “taught” how to read CFS tapes.  Over 2 TB of 
data were converted, with a downtime of 3 days, to Convex UniTree.  NCSA spent the 
next year rewriting all the CFS data tapes to the UniTree format, so code to read CFS 
tapes could be deleted at some future date.  
 
2.1 Convex’s version of UniTree 
In 1991, NCSA moved to a C220I machine from Convex.  The machine had dual 
processors and was wired for fast I/O.  It had one hundred gigabytes of local SCSI disk, 
five hundred megabytes of memory, twelve 3480 tape drives manually mounted, and 1 
Ethernet.  The main user base still resided on the Cray2 and Cray XMP with a Convex 
3880 machine coming into production as an additional compute server. The storage on 
the supercomputers was still purged as jobs finished, and users were required to store 
their own files and manage their own mass storage space.  Accessibility was changed to a 
common FTP interface for all data, and data transfer performance improved because of 
the Ethernet interface(s).  At first, the users liked the new procedures and were very 
happy with the FTP interface but, over time high-speed data networks were installed on 
the Crays, increasing network bandwidth, and mass storage transfers once again became a 
bottleneck.  The data rate was too slow.  User data rates were 6-8 Mbit/s (1MB/s). The 
one Ethernet interface could not keep pace with 2 systems running Hippi.   Jobs were 
waiting on the Crays, and were wasting compute time in I/O wait states for the mass 
storage system to return. 
  
The amount of data the system was ingesting was becoming more costly to store, and 
NCSA was forced to set storage quotas to limit users, mainly by encouraging them to 
improve their file management rather than by restricting the work they were able to 
accomplish.  However, users reacted by storing their data in alternative, less reliable 
places that created more hardship for them.  A new tape technology, Metrum 2150 tape 
drive, moved data at twice the speeds of the 3480’s, stored seventy times as much on a 
tape (200 MB on a 3480 vs. 14 GB on Metrum), and a media cost was introduced to 
alleviate NCSA’s storage cost problems.  As data was written to tapes holding 14 
GB/tape, the media expenditures of NCSA dropped dramatically.  The Metrum tape drive 
specification stated drives should be used over 20% of the day.  NCSA calculated that 
with 8 drives, that requirement could be met.  NCSA also still dual-copied all data. The 
cost effectiveness of the Metrum tape medium enabled NCSA to lift user quotas. Over 
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the next three years, additional Ethernet interfaces were added with increased disk cache 
allowing files to reside on disk longer.  It became very apparent that a Hippi interface 
was needed to move data over the network faster, but the C220I machine could not be 
upgraded to include that interface.  The Convex C3880 was being phased out as a 
compute server, and a large Thinking Machine CM5 was being brought into production.  
NCSA’s mass storage system was “moved” to the C3880 machine.  There was no 
conversion program needed.  The C3880 had the same operating system and same 
hardware as the C220I machine.   The databases were moved (FTP) to the new machine 
along with the tape drives.   The data was purged from disk (all written to tape) on the 
C220I.  When the C3880 came up, the data disks were empty, the databases showed all 
the data on tape, and six terabytes were “moved” to the new machine.  All this took place 
during a normal downtime segment of less than 3 hours.        
  
2.2 Continued Upgrades  
The Convex C3880 machine (1994-1997) system was configured with eight Metrum tape 
drives, two gigabytes of memory, two hundred gigabytes of disk, eight processors, one 
Hippi interface, and two Ethernet interfaces.  All traffic from the supercomputers was 
routed over the Hippi while traffic from other systems went over the Ethernets. This 
caused less congestion on the Hippi interfaces for slower data transfers.  Users accessed 
mass storage through FTP and still managed their storage.  During the production years 
of the C3880 archival storage machine, the CM5 was decommissioned, and SGI Power 
Challenge machines came into production.   There was no longer one large machine, but 
several large machines all running jobs, and storing data.  With many more machines 
capable of storing data through Hippi interfaces, a single Hippi interface could not keep 
up. Data streams started piling up with 3-4 concurrent transfers, driving down Hippi 
performance.  The Hippi performance from the SGI’s to the Convex was poor due to 
different revisions of hardware.  The SGI PowerChallenge machines were capable at the 
time of 25MB/s, while the C3880 could transfer to the CM5 at 15MB/s, and only 3MB/s 
to the SGI machines.  Tape technologies were also changing.  The vendor was phasing 
out the Metrum tape.  Therefore, new tape technologies were needed, but could not be 
connected on current machine.  A new system was needed that could handle multiple 
Hippi interfaces (the latest revision), numerous simultaneous transfers and, as always, 
new tape technologies.   
   
2.3 HP Exemplar X-class Machine  
In 1997, NCSA purchased for the mass storage system server a HP X-class Exemplar 
machine. NCSA had stayed on the C3880 machine one year longer because there was not 
a strong I/O machine to move to until the Exemplar machine was ready for production. 
There was again very little conversion needed for the twenty-eight terabytes of data to be 
up and running quickly. The conversion was the same from the C220I to the C3880.  All 
data was purged from disk, databases moved (FTP) showing all data on tape, old host 
turned off, devices moved, and new host booted with same old name.  NCSA stayed on 
this machine for one and one-half years (1997-1998). This machine had eight processors, 
four gigabytes memory, five hundred gigabytes of SCSI hardware RAID disk, two Hippi 
interfaces and three Ethernet interfaces.  Our user base started on the SGI Challenge and 
Power Challenge machines, and then migrated to the SGI Origin class machines. The 2 
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Hippi interfaces were divided up among the systems so that a “load sharing” could be 
achieved, giving users dual high speed data transfers into the machine.  The new machine 
was capable of much more throughput than the C3880, so the simultaneous data streams 
count dropped dramatically.  User scratch space was increased and more memory added 
to the production machines, but data management was handled as previously, an FTP 
interface for users to move/store data as jobs finished in batch queues.   
 
The mass storage server system turned out to be a terrible environment.  HP, who 
purchased Convex, phased out UniTree and Convex hardware support.  Reliability of the 
system was questionable, it required a reboot every couple of days.  NCSA did get some 
work done in spite of the problems by purchasing six IBM 3590 tape drives including 
NCSA’s first tape robot, an IBM3494 library.   NCSA copied all the Metrum data to IBM 
3590 tape technology within one year because the vendor was phasing out the Metrum 
tape technology. The IBM3590 was faster than the Metrum, but did not hold as much 
data/tape.  The IBM 3590 held at the time 10GB/tape.   The cost difference was not 
significant enough to warrant changes in NCSA’s storage policies.    
 
The environment for the users remained the same.  The aggregate throughput of the 
machine was much faster, but its instability drew many complaints. The Exemplar 
machine was able to stage/retrieve user data on both Hippi interfaces at 21MB/s (a 
combined total of 42MB/s).  Normally there were 3 simultaneous transfers, but there 
have been as many as 12.  The number of processors and machines in the Origin cluster 
continued to climb which in turn increased the need for more data streams to the mass 
storage system.  Stability and aggregate throughput to keep up with the amount of I/O 
produced by our users were issues and NCSA again needed to upgrade  
 
2.4 The switch to UniTree Inc and SGI  
In 1999, NCSA evaluated HPSS, DMF and UniTree, Inc. storage systems.  NCSA had a 
solid base in SGI’s technology with much experience in the hardware and the software.  
UniTree, Inc. was selected to run on an SGI server.   A new Origin eight-processor 
machine was purchased with four gigabytes of memory, two terabytes of locally attached 
fiber channel disk, three Hippi interfaces, and two Ethernet interfaces. UniTree, Inc 
provided a conversion program that rewrote the HP formatted databases on to the SGI in 
UniTree Inc’s format, the data was purged from disk, devices moved.  The capability to 
read HP formatted tapes was already in UniTree Inc’s version.  The new system came up 
with seventy-five terabytes of data on tape in a matter of hours.  UniTree, Inc. on our SGI 
machine has proven to be reliable and efficient from its deployment in 1999 to today.  
The aggregate throughput of the mass storage system was 180 MB/s.   During that time 
NCSA’s user base was migrated from the one hundred and eighty SGI Power Challenge 
processors to fifteen hundred  SGI Origin 2000 processors logically clustered into 10-15 
individual machines. The user data rates were and still are 45MB/s for each stream across 
the Hippi network.   .    
 
The three Hippi interfaces on the mass storage system were load “shared” by dedicating a 
Hippi interface to the interactive machine, and splitting the traffic for the remaining 
Origin processors across the other two Hippi interfaces.  The six 3590 drives were moved 
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on to the new system, and a STK Powderhorn with seven 9840 drives and four 3590 
drives was installed for a mixed media solution.   This is the first time that NCSA has had 
a “mixed” media tape solution without decommissioning one of the two.  NCSA used the 
9840 tapes for the smaller files in the archive, taking advantage of the mid-load 
technology making time to first byte much faster.  This small file threshold has changed 
over the years, but started out as 500MB or less.    The 3590-tape technology was used 
for all other files, and all copy 1 data moved to an offsite facility.  NCSA continued to 
run both IBM and STK libraries until the fall of 2001.   
  
2.5 Upgrades to Origin 2000 
Over the last two years, the mass storage system has grown in size and capability.  NCSA 
started with eight 195 MHz processors, two gigabytes of memory, three Hippi network 
interfaces, and two Ethernet interfaces, an IBM library with capacity for 12 TB of 
storage, a Powderhorn library with capacity for 120 TB, ten 3590 tape drives, and seven 
9840 tape drives. The system today has grown to sixteen 250MHz processors, with 
twelve gigabytes of memory, an ADIC AML/2 library with two sections for a capacity of 
720 TB, an STK Powderhorn with capacity of 120 TB, six IBM LTO tape drives, ten 
3590 tape drives, seven 9840 tape drives, eight GigE network interfaces, and three Hippi 
network interfaces.   Its current throughput is 235MB/s with an archive size of 420 TB. 
 
In the past two years, the user base machines have changed.  NCSA now has fifteen 
hundred SGI origin processors with a mixture of 10 TB of disk. There are plans to deploy 
15 TB more for production machines early in 2002.  The mass storage system today 
supports a production IA-32 Linux cluster of 1024 processors and five terabytes of disk, a 
180 node IA-64 (Itanium) dual processor Linux cluster, and an SGI Origin Array that will 
be phased out over the next two years as the Linux clusters move into production.  The 
Hippi network will also be phased out, with GigE as the replacement.  The performance 
study that NCSA has completed showed that the 45 MB/s single stream from the SGI’s 
will not be matched, but the aggregate throughput of the GigE is greater because the 
handling of multiple concurrent streams is better.   A single Hippi interface single stream 
runs at 45 MB/s and drops to 25MB/s for two streams, and 8 MB/s for three streams.  A 
single GigE interface from SGI to SGI will transfer data at 25MB/s, and drops to 22 for 
two streams, and to 20MB/s for three stream.  NCSA usually has 5-8 streams of data at 
all times.       
 
The six TFLOP TeraGrid system will be the next big increment.  The data that the mass 
storage system is ingesting is expected to continue to increase; however, predicting the 
growth rate and the necessary aggregate throughput needed has been difficult.  Big jumps 
in CPU performance have inevitably produced more and more data, and the growth 
trends appear to advance along the same curve that is typical of other supercomputer 
centers. [1] If there is a big jump in CPU hours offered, the amount of data stored shows 
a proportional jump.  But the network bandwidth into and out of the mass storage system 
that is necessary for applications is hard to predict.  NCSA has been increasing aggregate 
bandwidth of the storage system after the need has been manifested.   
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NCSA has set a goal for 2002 of achieving 750 MB/s (three times current throughput) as 
the optimal performance for the mass storage system for the first year of the TeraGrid 
machine. The Itanium cluster is entering friendly user testing (March 2002).  As 180 dual 
processor machines start storing data to the mass storage system through each systems’ 
own GigE interface, observations will be gathered and adjustments will be made to local 
disk and archive systems as needed.   Only time will tell if these predictions will ring 
true.   
  
2.6 Hidden work for the mass storage system  
The mass storage system at NCSA not only stores/retrieves user data, but also insures the 
integrity of the data trusted to the archive. In other words, if a file has been stored at 
NCSA’s mass storage system, it will be retrieved.  No files transferred properly to the 
mass storage system at NCSA have ever been “lost” or become irretrievable.  There was, 
on one occasion, Hippi protocol inconsistencies between SGIs that contributed to a 
handful (<50) of files being corrupted before they reached mass storage.  Those files 
were then retrievable, but still “corrupted”.     The duplicate copy has been a costly but 
wise investment.  Media failures occur occasionally, but users at NCSA do not notice 
other than a file might take longer to retrieve than normal.  NCSA is constantly rewriting 
data to new tape formats/media.  Migrations in the past have been from the 3480 tapes to 
Metrum, Metrum to 3590, 3590 to 3590E or LTO, 9840 to 3590 or LTO.  When 
purchasing a machine, NCSA has always included the background processes that need to 
take place to maintain the environment.   Tape drives are not only needed for 
writing/reading of user data, but for repacking user data onto different tapes, possibly 
different tape types.  The memory, disk cache, CPU, and tape infrastructure must be 
capable of  handling these additional “hidden” tasks of a well-managed HSM.    
 
3.0 Disk strategies for big iron   
The large batch systems at NCSA serving supercomputing science over the years have 
changed quite a bit.  Each increase in CPU capacity, memory, and new architectures has 
meant increased demands on the mass storage system.   Sometimes, it has been more 
bandwidth into the machine for each stream, other times it has just been an increase in the 
amount of data stored.  NCSA has benefited from other disk storage solutions that 
complement the mass storage system.   Pools of local disk for the batch systems, and 
other smaller disk resources managed by the users for their own data have been highly 
effective.  Each strategy tried has its niche for how it fits in the environment, but none of 
the solutions can do it all.   Below are details on NCSA’s file system strategies. 
 
3.1 NFS  
NFS has been used by every supercomputer that NCSA has placed in production.   The 
Crays used it for cross mounting file systems to mount home directories and application 
software.   NFS is slow.  However it is easy, convenient, stable, compatible, and well 
understood by users.   NFS is currently being used by NCSA for protecting the critical 
file systems of the large supercomputers.  A failsafe server serves file space for user 
home directories as well as all application software.  These file systems are exported 
from the failsafe system to the Origin Array, the Linux IA32 cluster and Linux IA-64 
cluster. NFS is also used to cross mount all the local scratch file systems for each “type” 
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of cluster.  NFS is used by batch jobs to see all storage on the different batch machines, 
but users take a performance hit by using it for read/write operations.    
  
3.2 Andrew File System  
The Andrew File System (AFS) is heavily used more for the desktop infrastructure 
environment.  NCSA hoped in 1994 that AFS would replace NFS for home directories 
and application software but the file system didn’t have the performance required.  AFS 
is used on the Origin cluster for a common link to center-wide installed software such as 
perl, email readers and the like.  Some users do use AFS for data sharing to other 
environments at NCSA without FTP transfer, but performance is quite limited.   
 
3.3 Local scratch  
As described above, the large batch systems have local disk attached that is available to 
users for the duration of their batch job. As the jobs run, data may be retrieved from mass 
storage and before the job ends users are responsible to store their data back.  NCSA has 
written a few “management” scripts for our users for doing persistent stores so that data 
will not be removed from scratch file systems until the files actually make it to the mass 
storage system.  In the days of the Cray Super Computers users, had access to a gigabyte 
of disk storage for scratch space and that has grown steadily to where today NCSA 
supports file systems in the terabyte range.     
 
3.4 Backup  
The backup system at NCSA also runs a UniTree storage system on a SUN 6500 
machine.  It has four IBM LTO tape drives, and shares the ADIC library with the mass 
storage system.   This system handles one terabyte of data per week.  NCSA backs up the 
AFS, NFS, /root, and /usr file systems for all the batch machines and all desktop 
machine/laptop/file servers.  The data in the scratch file systems is too volatile and 
therefore are never backed up. 
 
4. User and Storage patterns 
 
The amount of storage at NCSA has continued to climb at a steady pace.  Recently the 
growth has been more aggressive. The years 1997 – 2001 saw an 88% growth rate.  As 
machine CPU hours continued to grow at close to exponential rate, the storage also 
followed faithfully.  The chart below maps out the “normalized CPU hours” of the 
individual production machines at NCSA.  The normalized hours have been calculated 
based on utilization of the machine, and then quantified to be equal among the different 
machine types. This allows us to equate cpu hours for all machines at the different 
supercomputer centers for NSF allocations of CPU hours.    The bottom section of this 
chart shows the different machines that were in production during those years.     
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As the archive has grown, storage and retrieval patterns have changed. Large file archives 
historically have been read only [2] At the CFS conversion time, the size of the archive 
was 2 TB. UniTree was used primarily to store files that were never retrieved.   The older 
the data, the lower the chance it would ever be recalled. Researchers try to predict what 
files will be used [3], but over the years, the “reuseability” of the files has changed 
dramatically.   In 1992, as the graph below illustrates, 18% of files up to three months old 
were retrieved, at six months 12% were retrieved, and after 12 months 3% were recalled.  
Performance of the archive was unacceptable, and scientists found it faster to recompute 
data than to get the file from the archive.  With increases in bandwidth and stability the 
data retrieval statistics have been changing, new files in the first three months in the 
archive have a retrieval hit rate of 50%, the first six months at 28% and drop only to 18% 
for data within its first year in the archive.  So it is no longer a write only archive.  Data 
storage performance was one of the most important criteria that the archive was judged 
on at NCSA, and now the increased speed and capacity have made data retrieval 
extremely important as well. Users are no longer recomputing, but retrieving data as 
needed, quite often, as the chart below shows.    As scientific archives grow because of 
further research data derived from those archives, the role of data retrieval can only 
increase..   
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4.1 Growth for whole archive  
 
Our growth patterns have remained much the same over the years.  The archive size has 
been doubling about every year.  The NCSA archive by this time next year will be close 
to a petabyte in size. Below is a graph of NCSA’s overall growth.  The first ten years are 
overshadowed on the graph by the huge amounts of data stored in the later years.   
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The graph of just year 2001 storage statistics for NCSA has a line for each day.  The 
growth is very linear, and continues.  For the TeraGrid, there will be a large increase in 
the data stored, but the amount is not known at this point.  It is very hard to predict 
storage requirements for supercomputer centers [4]. As users have been given more 
resources in the past, they have produced more data, and storage seems to stay on the 
same curve as the normalized CPU hours of the machines..  The above graph does show a 
correlation to the CPU hours of a machine and the amount of data stored, but the number 
of CPU hours offered by a machine is not known.  Within the next five years, there will 
be a technology switch again, as NCSA continues on the same curve; it is not known 
what is next for NCSA or supercomputing in general. [1]   
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4.3 Usage patterns and filesize  
The average file size has also doubled in the last couple of years, but the average file size 
of our archive still seems small for a 400TB archive. Small files are normal for many 
large archives [4].  A chart of the average file sizes stored in the archive for the last six 
years shows that it has been increasing, but there are still very small files being used, 
while there are only a few files that are large (>500GB). This means that when 
purchasing drives and media types, the small files need to be considered.  The small file 
is sometimes not brought into the mix when discussing mass storage, because large files 
are the norm, but as seen here, that is not true.   
 

Year Average File Size  (MB) 
1996   8.95 
1997 13.75  
1998 20.49 
1999 38.97 
2000 43.50  
2001 68.88  
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The filesize growth may be attributed to increased capabilities of the processors so that 
transfers are no longer as time-consuming.  The filesize certainly has not grown as 
expected, so maybe moving files that are 100GB or larger is still difficult, and a huge 
undertaking not only to stage, but to work with on the various production machines.   As 
the average file size continues to grow, in 5 years NCSA users will be moving files > 100 
GB with ease because of advances in data management and increased bandwidth.     

 
Our top 10 users in FY 2000 stored: 
   Files  TB 
 User1  4,391  3.2  (user 11 in 2001) 
 User2  259  2.8 
 User3  77,498  2.5  (user 9 in  2001) 
 User4  107,722 2.3 (user 1 in 2001) 
 User5  1,162  1.8 
 User6   2,743  1.7 (stays in slot 6 for 2001)  
 User7  3,790  1.6  
 User8  26,651  1.4 
 User9  8,757  1.3 
 User10  9,101  1.2 
 
While in FY 2001 the top 10 users have stored: 
   Files  TeraBytes 
 User1  328,394 9.4 
 User2  10,163  4.3 
 User3  23,404  4.0 
 User4  9,104  3.8 
 User5  1,871  2.5 
 User6  4,275  2.9  
 User7  2,427  2.1 
 User8  5,683  1.9 
 User9  30,033  1.9 
 User10   4,122  1.8 
 
Just among our top ten users, the amount of data stored has considerably jumped.   Our 
largest user in 2000 stored over 3 TB of data in 1 year.  In 2001 our top four users each 
stored over 3 TB of data, with our top user in 2001 alone storing 9 TB.  Another 
interesting point from the data above is that the top users at NCSA do not remain the 
same year after year.   Only 4 users in the top 10 for year 2000 were in the top 11 of 
2001.    
 
4.4 Building for the TeraGrid machine  
The NCSA mass storage system will be receiving another upgrade in Jan 2002 with an 
upgrade to six terabytes of disk.   NCSA will also add an additional distributed disk 
server slated for production use in spring 2002.  The second disk server will be an SGI 
Origin 3200 with four processors and two gigabytes of memory.  The 3200 machine will 
have six terabytes of disk and ten GigE interfaces for a throughput of 250MB/s. NCSA is 
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researching currently how to split data across the machines, with criteria based on uid, 
gid, original IP address, or file size being investigated. The new system combined with 
the current system makes the disk cache twelve terabytes with a real aggregate 
throughput of 450MB/s.   NCSA will be also adding ten more IBM LTO tape drives.   In 
late 2002 a 3rd distributed disk machine, an SGI Origin 3400 with aggregate performance 
of 300MB/s is to be put into production.  This will bring the aggregate mass storage 
throughput to our goal of 750 MB/s.   This goal has been based on the TeraGrid 
machine’s predicted performance and the cost analysis of additional 
bandwidth/throughput for the mass storage system.       
 
Now that NCSA has machines that can handle data at very high rates, and grid and user 
portal environments are being deployed, improved user tools are needed to move data 
from place to place. Some important deficiencies relate to inadequate descriptions of 
what data are available, where the data are located, and how and under which condition 
users may access the data [5].   The tools that NCSA has given our users have not 
changed from some form of FTP.  NCSA is working on porting GRIDFTP from the 
Globus group onto the UniTree server so that the FTP transfers will be in parallel to the 
mass storage system.  These tools are also being added to the distributed parallel file 
systems as explained below.   We are incorporating GRID data technologies and working 
with the Globus group [6] at ANL to enable a grid environment of data being moved, 
replicated, and archived for all grid users.  Gridware from Globus will help users take 
advantage of different data storage components with in the Grid, and aid the users in data 
management issues.   
    
5.0. Linux Clusters Storage  
NCSA is looking at many different file systems that might be able to accomplish our 
goals for the TeraGrid machine, and one standout is the Global Parallel File System 
(GPFS) from IBM.  This is the linux port of GPFS to IA32 architectures from the SP2 
machines.  GPFS has been running at NCSA since October 2001.  GPFS has three major 
components: a) the disk server is the machine with the disks attached; b) the GPFS server 
is the metadata server; and c) the individual client.  A GPFS file system client must be 
installed on each system.  Each system can then see all the data.   GPFS can scale up by 
adding more servers and clients. GPFS can have multiple servers hosting the same file 
system or individual file systems as needed.   NCSA has tested up to 120 clients and 8 
servers all seeing the same single file system.   GPFS has high availability options so that 
there is fail-over for disk servers and GPFS servers.  Users interface with the native I/O 
commands to the file system, and all clients can read/write to the same file system and 
even the same file.  Files are distributed across multiple servers by GPFS so that one user 
can gain access to the entire GPFS file system with all servers writing data at once. The 
performance does decrease as expected as more I/O requests are added from there.   
 
NCSA thinks that this is a very strong product with a very good team behind it.  GPFS 
relies on a very fast low latency network for good performance to be observed. Since the 
changes in Myrinet driver in release 1.5, GPFS made great strides in reliability.  GPFS is 
a file system for a single system only, there is no data sharing with other systems.  A 
follow-on phase of GPFS development with IBM is a mixed GPFS cluster file system.   
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The mixture would be IA64 and IA32 clients and servers for a single GPFS file system.  
NCSA wants to add the Globus toolkit to GPFS, so that parallel data transfers can be 
used to move data out of the linux cluster machine to other grid systems or a mass 
storage.   
  
The chart below compares the performance NCSA had with Ethernet and Myrinet.  
Myrinet has the best performance.  The chart also shows the performance of 2 servers 
running on Myrinet.  The performance that one client receives shows that the single client 
can gain the entire GPFS file system pipe.  The performance scales down from there.  
These runs on the file system were done before several updated releases of the RedHat 
kernel with significant I/O changes. 
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The performance achieved running 4 and 8 servers and various numbers of clients is 
shown in the next chart. The 4 wide servers numbers were run before tunables for the 
kernel were made.  The 8 wide tests have the kernel mods, but the SAN disks haven’t 
been tuned yet.   All clients write a 256 MB file simultaneously.  Neither IBM nor NCSA 
is satisfied with the performance, and both are working on that part of this project.  
Problems are thought to be in the 7.1 kernel.  Reads for a 10 wide test of GPFS are >12 
MB/s on average, and > 31MB/s for writes.   
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6.0 Conclusions 
 
The mass storage system at NCSA has evolved over the years.  It started out as a small 
system with a slow interconnect and evolved to a very large system with many fast 
network interfaces.  The supercomputer machines providing the bulk of the data to the 
mass storage system have also evolved.  The machines started out as one system with a 
few CPU’s, changing to a few systems with many CPU’s, to many machines with few 
CPU’s.  File systems on the supercomputers have also changed, but users must do their 
own data management.  They decide where to put their data depending on their 
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applications.  The interfaces for users to move data are still the rudimentary FTP tools. 
NCSA is making great strides to incorporate Globus grid tools into clients and servers for 
utilization of parallel data transfers, and better data management.  
 
NCSA is adding a distributed data cache machine to its mass storage architecture to 
enable more simultaneous data transfers as the TeraGrid machine is built.  More data 
cache machines will be added depending on how much aggregate data throughput is 
needed.  History has shown that NCSA’s data archive is growing at almost the same rate 
as the normalized CPU hours on the production machines.   This is not hard to predict for 
maybe a year out, but gets harder the farther out one goes.  The throughput is the hardest 
question.  Not only do the mass storage archives need to keep up with the production 
machines on the LAN, but also as GRIDs gain users the amount of data coming in/out 
from production machines on the WAN will become an issue.   
 
NCSA is looking at many different file systems to provide the best environment for our 
users.  GPFS from IBM is being tested and beginning a friendly user period at NCSA.  
However more needs to be done to “share” data between these individual compute 
islands.  Moving the data to the machine an application is running on as needed is a step 
in the right direction, but more needs to be done in this arena.  Most of these tools today 
also deal only in flat files while databases are gaining respect and speed in the 
supercomputing environments.     
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Abstract  
Operating points to achieve Terabyte tape cartridge capacities and beyond drive both 
linear and track densities to values not perceived possible a few short years ago. The 
primary contributors to the issues related to these high capacities are the physical and 
magnetic properties of the tape media itself. The total magnetic moment of the recorded 
bit, driven by the magnetic coating thickness, dominates the recording process and 
determines the linear recording density possible. Moving a thin tape at high speeds and 
the mechanical stability in the cross track direction provide engineering challenges for 
increasing track densities in combination with many parallel channels for high data rates. 
These issues and trade offs are the main focus of this paper. 
 
 
1. Introduction 
Storing and retrieving data on magnetic tape is driven by (a) capacity (Gbytes/cartridge) 
primarily because of the cost of storage ($/Gbyte), (b) data rate (Mbytes/second) as 
people don’t want to wait forever and (c) reliability (the data has to be there!). This paper 
complements the presentations given by Ted Schwarz in past years [1-2] with a little 
more technical depth. The capacity of a tape cartridge is simply the areal density of the 
data multiplied by the area of the media used but is often preferably computed in tape by 
using the relation  
 

8
εNbLC =                                                                    … (1)                         

 
in bytes, where N is the number of tracks across the tape, b is the linear recording density 
in bits per inch, L is the length of the tape (in inches) and ε is a formatting/ECC overhead 
efficiency factor (typically about 0.7). The 8 assumes 8 bit bytes. The date rate is given 
by  
 

8
εnbVD =                                                                    … (2)  

 
in bytes/second, where n is the number of parallel channels used and V is the speed of the 
tape (in inches/second). These two relations capture the main parameters in increasing 
capacities to terabyte levels and data rates to 100’s of Mbytes/sec. The linear density (b) 
appears in both calculations and thus is a strong contributor to the problem. The number 
of tracks (N) in the capacity and number of channels (n) in the data rate are parameters 
that may be in conflict when radically increased as will be discussed later. 
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Table 1 shows scenarios for a 0.5, 1, 5 and 10 Terabyte capacities for various data rates 
for a normal IBM3480/STK9840/LTO/DLT  ½ inch wide tape cartridge form factor. 
Some tradeoffs between the parameters given in equations 1 and 2 have been included for 
illustrative purposes and one can easily see where a different set of trade offs could yield 
the same result depending on which aspect of the tape system you wished to stress more. 
The stress points are boxed for the cases shown and it is these challenges that are 
discussed below in relation to the media aspects, the heads and the channel in order to 
accomplish these operating points. 
  
2. Magnetic Recording  
Figure 1 shows a block diagram of a tape recording system from data in from a host 
computer channel, onto and off the tape and back to the host upon a data read [3]. This 
figure summarizes the main components and systems needed for the tape system to 
function. All the subsystems (write method, read equalization and detection, servo, head 

and tape handling) serve to deal 
with the unique properties of the 
tape media itself. This is from 
both a magnetic and mechanical 
perspective. The media dictates 
how the rest of the system is 
designed in order to achieve 
high-density data recording and 
thus is the main contributor to 
limitations thereto. 
 
Fundamental to recording 
digital data on magnetic tape is 
the analog magnetic recording 
that takes place between the 

Figure 1.  Block diagram of a tape recording 
system 

Capacity (TB) 0.5 0.5 1 1 5 5 10 10
Data Rate (MB/sec) 60 120 110 220 150 300 280 559
No. of Pll Data Channels, n 16 32 16 32 16 32 16 32
No. of Data Tracks, N 768 768 1344 1344 4750 4750 4140 4140
Trk. Pitch  (µm) 14.0 14.0 8.0 8.0 2.3 2.3 2.6 2.6
Channel Pitch, c p  (µm) 109 55 109 55 109 55 109 55
Rd. Track Width (µm) 7.0 7.0 4.0 4.0 1.1 1.1 1.3 1.3
Tape Speed, V  (m/s) 4.8 4.8 8.0 8.0 9.0 9.0 10.0 10.0
Bit Density (kbpi) 224 224 248 248 298 298 500 500
Track Density (tpi) 1812 1812 3172 3172 11211 11211 9771 9771
Areal Density  (Gb/in2) 0.41 0.41 0.79 0.79 3.35 3.35 4.89 4.89
Bit Cell (nm) 114 114 103 103 85 85 51 51
Bit Cell (ns) 23.7 23.7 12.9 12.9 9.5 9.5 5.1 5.1
Write Eq. Pulse (nS) 9.5 9.5 5.2 5.2 3.8 3.8 2.0 2.0
Tape Length (m) 865 865 865 865 1000 1000 1400 1400
Write Time per Cart. (min) 144 72 152 76 550 275 604 302

Table 1.  Terabyte operating points 
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Figure 2.  Magnetic Recording 

head and the media. These two 
magnetic components in 
combination can make or break 
a reliable data recording system. 
Figures 2 illustrates magnetic 
recording on tape and its digital 
interpretation. The digital 
interpretation is that a transition 
between a region on the tape 
magnetized in one direction to 
the opposite direction is 
interpreted as a logical ‘1’ and 
the absence of the transition a 
‘0’ when referenced to a data 
clock. This interpretation 
depends on the logic used by 
the detection system and coding 
design. For instance a PRML 
channel (Partial Response 

Maximum Likelihood) interprets the recorded transitions in a different way by partial 
amplitude sampling in order to increase the bit density using somewhat lower magnetic 
transition densities than in straight peak detect channels as illustrated. Such channels 
increase the logical bit density up to twice that of the recorded magnetic transition 
density. 
 
3. Recording Technology Challenges 
Fundamentally, an increase in linear recording density requires the transitions to be closer 
and closer together on the media and the ability to resolve them. Table 1 indicates the 
length of a logical bit (bit cell (nm)) for the various scenarios given for reference (~50 – 
100nm). Tape media to date has had the magnetic coating somewhat thick (0.5µm or 
more) compared to these dimensions which gives broad written transitions due to the 
generation of transitions curving into the depth of the magnetic coating and the 
demagnetizing effect of sizeable opposing magnetic poles. These effects are summarized 
in the equation for the transition length parameter (the ‘a’ parameter) thus: 
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r                                            … (3) 

 
where Mr is the remanent magnetic moment of the medium, δ the magnetic thickness, Hc 
the magnetic coercivity of the medium, and d the head to tape spacing. This relation 
comes from assuming that the transition follows and arctangent function shape [4]. In 
order to reduce this transition length parameter the ratio Mrδ/Hc must be reduced. This 
can be done either by increasing the coercivity, Hc, which physically means it is harder to 
push the magnetized regions apart or by reducing the medium thickness, δ, which lowers 
the total magnetic moment and hence the force which is pushing the regions apart. 
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Reducing Mr is a little more difficult using iron particles (as currently used in MP tape), 
as this would mean reducing the number of particles in the magnetic coating, which 
would have the side effect of reducing the signal-to-noise ratio (SNR). An acceptable 
reduction in Mr could only come from a different particle; for example barium ferrite 
(BaFe) or a different media construct (such as thin film media). The coercivity of tapes is 
in fact on the upswing with prototype MP media pushing 2500 Oe compared with today’s 
1650 Oe 9840 media and 1850 Oe DLT/LTO media. Figure 3 shows how linear density 
has indeed gated tape products in the past according to media coercivity together with a 
projection for future systems based on published roadmaps. (The data here are taken from 
existing IBM, STK, Quantum DLT and LTO tape products). Excessive increases in 
coercivity would however begin to challenge the available magnetic pole materials used 
in the write head where the saturation flux density is limited. This would eventually 
degrade recording performance if the coercivity increases much beyond 3500-4000 Oe. 

Reducing the thickness is the primary direction to pursue and recently this has been 
achieved in particulate media by using a dual coating process. Here the magnetic portion 
of the tape coating is spread thinly over a simultaneously coated non-magnetic under 
layer. This effectively provides a thick physical coating for smoothing purposes coupled 
with a reduced thickness magnetic layer as illustrated in figure 4. This has enabled 
coatings to be produced as low as 100nm and progress is being made to reduce this 
further [5]. This technique, however, will eventually run out of steam for the particle in 
binder tape medium concept. One quickly gets to very few 20-30nm thick particles 
stacked on top of one another in a <100nm coating with the resultant SNR reduction. For 
areal densities greater than a few Gb/in2 , the move to thin film media will have to be 

0

50

100

150

200

250

300

1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

kbpi

CrO2  650 (Oe)

MP1  1650 (Oe)

MP2  1850 (Oe)

MP4 2400 (Oe)?

Metal 2700 (Oe)?

Fe2O3  350 (Oe)

trends.xls

Figure 3.  Linear density versus year for linear tape systems 



113 

made as it was for magnetic 
disk. (Tape is indeed fortunate 
that magnetic disk has already 
demonstrated solutions to high 
areal density magnetic 
recording.)  
 
The other parameter that figures 
into the areal density is track 
density. Again the number of 
particles contained within the 
bit becomes squeezed as the 
track narrows. As the SNR is 
related to the total number of 
particles contained in the bit 
volume [4] an estimate for the 

areal density limit, Alim, for metal particle tape can be made from an SNR standpoint and 
input from media producers on what might be the maximum particle density (smallest 
thermally stable dispersible particle). Following Mallinson [4] it can be shown that 
 

2
1

2
1
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= pSNRtA                                                                     … (4) 

 
where t is the track density, p the magnetic particle density in the media and SNR is the 
signal-to-noise ratio requirement. Using for example 3000 tracks/cm (7620tpi), 1017 
particles/cm and 20dB we get an areal density of approximately 10Gb/in2. This assumes 
that the whole written track is read, no spacing loss and one logical bit per transition. 
Using a write wide read narrow scenario, as linear tape currently does, and invoking a 
PRML channel you come out with a very similar number or maybe slightly higher 
depending on the SNR and desired raw bit error rate. (PRML channels operate at lower 
effective SNR values.) The areal densities in the cases shown in Table 1 approach 
5Gb/sq.in. and the question arises as to how close to the computed limit can you engineer 
particulate media for this, or is thin film media prompted as it was in disk. 
 
The other main parameter in equation 3 is d, the head to medium spacing. This also 
figures heavily into the wavelength response upon read back. Loss of resolution of the 
shortest wavelengths is severe (e-kd , where k is the wave number) and the resultant signal 
loss is normally given in dB form by the relation [6] 
 

 
λ
dLoss 6.54−=     dB                                                          … (5) 

 
In combination with spacing on write, the multiplier in equation 5 (-54.6) is closer to  
-100! Although we run the tape in physical contact with the head, the ‘magnetic’ spacing 
seen is due to media roughness, recession of the magnetic elements in the head and any 

Figure 4. Diagram of a cross section of dual coat 
tape recording media 
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adherent (or temporary) debris or stains on the head. Current systems appear to have up 
to 70nm of magnetic spacing while in apparent physical contact and this will have to 
come down if we want to resolve high density terabyte recordings and not suffer the 
resulting loss in signal amplitude and resolution. 
 
Head technology appears to have enough precedents and product introductions (again as 
seen in disk magnetic recording) that tape head offerings should be able to readily 
respond to new media types as they are developed. A classic example would be the shift 
to all thin film write heads and thin film shielded read heads as well as merged 
pole/shared shield structures commonly used in disk and now being seen in tape 
applications. Examples are shown in figure 5. The main issues facing the tape head 

concern the consequences of using multiple channels simultaneously in read-while-write 
mode. I.e., direct write to read feed through and read element off-track due to tape static 
and dynamic azimuth. A future example of disk like technology for tape would be the 
introduction of the GMR spin valve read sensor now prevalent in desktop systems in disk 
drives. This would be predicated by the availability of a suitable media that would be 
compatible with high-density recordings and these very sensitive devices, as well as 
environmental issues seen in tape usage. Alternatively, new designs of spin valve sensors 
customized for tape could be used with the still somewhat higher Mrδ values that may 
persist. The switch to spin valves will be driven by the need for raw signal amplitude to 
overcome the unique noise sources in the multi-channel read-while-write tape 
environment (such as write-to-read feedthrough) as the read element width and hence 
signal amplitude is reduced. 
 
Another issue raised in Table 1 is the time scale of the recording. For high bpi and fast 
tape speeds, the bit cell time is reduced to <10nS. If write equalization persists as a 
favorable recording method (which it will if the Mrδ is not reduced significantly) then the 
recording system (write current, write head magnetics and media magnetization) will 
have to respond on the 1nS time scale. For a 3nS write equalization pulse the media has 
to see the field at least 2nS of that time to stand a chance of responding.  Figure 6 shows 
how magnetic media (in this case MP1 media) changes its effective coercivity for fields 

Figure 5.  Diagrams of thin film tape head types showing thin 
film write, MR read and combination shared shield devices 
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Figure 6.  Coercivity of MP tape versus time 
scale of the applied magnetic field.

applied at very short times.  
The rise in coercivity means 
that we would have to 
overdrive the system to affect 
the recording in the required 
way presuming that the head 
magnetic core can provide the 
specified field in response to 
the drive current. The issue of 
getting the drive current into an 
inductive load like a write head 
exacerbates the problems in a 
multi-element tape head where 
stray capacitance paths can 
shunt the coil current. Core 
materials for the head appear to 
be available to provide this 

response and current production head types such as the StorageTek T9840B write head 
have demonstrated good performance down to 10nS. Data for this is shown in figure 7 for 
such a write head, which uses cobalt based amorphous alloy poles. 
 

This data shows that the read 
back amplitude remains the 
same when the pulse length is 
reduced and that the head 
efficiency does not roll off 
significantly. The two 
efficiency curves represent the 
directly measured head 
efficiency and the head 
efficiency corrected for the 
media coercivity shift 
according to figure 4 (this 
curve is indicated with an *). 
These time scale issues are not 
at any fundamental limits 
imposed by the laws of physics 
but provide the engineer with 
interesting challenges. The 

particulate and metal based tape media respond at 1nS and I think operating near 1nS will 
be avoided in any case with the eventual elimination of write equalization. 
 
4. Mechanical Issues 
The tape speeds used in Table 1, for the high data rates, provide the tape path and motion 
control with some challenges. This is especially so considering the tape lengths needed 
for the capacities which in turn means the tape thickness needed for the cartridge size 
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approaches 5µm (or even a little thinner). This thickness (or rather thinness) means a 
relatively low tape tension with which to achieve these speeds with adequate lateral 
guiding and tape pack management. On top of this, the bandwidth of a track following 
servo system would have to increase together with its capability to achieve the track pitch 
targets. Again, no real fundamental limits here, just a solid engineering problem. 
Unfortunately, these factors get much less attention than the more intuitive limits 
imposed on track density by the dimensional stability of the media itself. Very narrow 
tracks, coupled with multi-channel heads that span a significant portion of the width of 
the tape, result in track mis-registration (TMR) numbers that imply roadblocks beyond 
mere electronics. There is an interesting trade off between data rate and capacity that can 
be made as outlined in the 1998 NSIC tape roadmap [7]. Given a fixed tape length and 
achievable linear recording density, capacity can only be increased by increasing the 
track density (narrower tracks). This means the allowable off-track capability (OTC) is 
reduced. For higher data rates the only adjustable parameter, once the tape speed is set, is 
the number of parallel channels in the head. The more channels side by side the wider the 
span across the tape and more likely the end tracks will exceed the OTC as the tape 
dimensions change with time, tension, temperature and humidity. The results of the 
calculation of this trade off is formulated as  
 

( )
cpmCc

LWVbOTD
64

2 22ε=                                           … (6) 

 
where OT is the allowable off-
track expressed as a fraction of 
the track width, W the width of 
the tape, C the capacity of the 
cartridge, cp the channel pitch in 
the head and mc the media 
instability coefficient. Figure 8 
shows the situation for various 
media stability numbers (from 
ref. 7) and is considered 
somewhat optimistic as it 
considers only writing the 
tracks in the correct location 
and not any read-while-write or 
realistic read back scenarios. 
Also current feedback from 
media suppliers is that the 

stability numbers will probably not improve as significantly as suggested here anytime 
soon. The implications of this chart are simple to interpret. If you want very high 
capacity, i.e., very narrow tracks, the number of parallel channels laid side by side will 
have to be reduced, lowering the possible data rate.  
 

Figure 8.  Data Rate/Capacity trade off for a 
linear tape system. 
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The only way around this is to change the way we parallel up head stacks to avoid the 
excessive head span or change in some other way we lay data on tape. Super DLT and 
helical systems for instance use dual azimuth recording on adjacent tracks allowing a 
larger OTC. This is one reason the areal density demonstrated by helical scan systems 
(e.g. SONY) already exceeds that projected for linear systems. Helical technology uses a 
single channel or few channels approach, high head-tape interface speeds, dual azimuth 
and short length tracks, which circumvent these media related problems. Unfortunately 
helical technology has suffered head and media wear problems and there is a perception 
of poorer reliability compared to linear systems, the basis for which is somewhat clouded. 
The challenge for the multi-channel linear head here is the reduced channel pitch. 50µm 
as indicated in Table 1 is certainly achievable, but beyond that, a new approach over 

today’s norm (figure 9) is expected. 
 
Finally, figure 10 summarizes the areal density progress and trend extension for linear 
tape based on past and present systems and published roadmaps. As mentioned before, 
heads and media in combination are the primary drivers for this parameter. The coercivity 
rise from oxide tapes to MP tapes and in the future thinly coated particulate or metal film 
tapes have been responded to by heads moving from ferrites to thin films and high 
moment thin films to write these tapes. This is in conjunction with MR and eventually 
GMR read heads to deliver appropriate signal quality. Also shown is the SONY helical 
6.5 Gb/in2 demonstration on metal evaporated (ME) tape and subsequent 16.4 Gb/in2 
point using spin valve heads [8], and the estimated MP limit using today’s assumptions. 
 
5. Conclusions 
It is clear that the medium has a significant if not the primary impact on the density 
growth in magnetic tape recording. As demonstrated by disk magnetic recording the Mrδ 
has to be reduced in order to increase the linear density. Significant reduction in this 
parameter would allow closely spaced magnetic transitions and enable the use of more 
sensitive read head sensors such as spin valves to boost the sagging raw signal amplitude 
as both the bpi and tpi increase. Calculating a limit for MP tape throws down the gauntlet 
for media, head and channel developers to counter this, as was seen recently in magnetic 

Figure 9. Example of a multi-channel, side-by-side architecture, thin film tape 
write head as used in today’s linear tape heads [3] 
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disk. There the areal density limit was calculated to be 36Gb/in2 in 1997 [9], which is 
now exceeded in today’s normal production disk drives! 

 
Increasing the data rate by increasing the number of parallel channels involves trade offs 
with tpi (i.e. capacity) if we remain with the side-by-side head stack architecture due to 
the increasing span of the active channels across flexible media, which is accepted as 
having somewhat poor dimensional stability. Head technology appears to be available to 
meet the challenge of the multi-terabyte capacity cartridge but this target is gated by 
media type and availability, and overcoming the engineering challenges of handling the 
magnetic and physical properties of the media. Tape is not nearing any fundamental 
scientific limits as seen in magnetic disk. Given the rather moderate areal densities 
currently seen in tape systems and optimism with regard to the development of tapes with 
thinner magnetic coatings, data storage systems using tape are poised to make some rapid 
advances in capacity and data rate. 
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1. Introduction 
 
With the emerging high-performance storage systems as well as the availability of faster 
processors and high-speed networks, many applications that were only dreams a few 
years ago, have become reality. For example, Digital Libraries and Digital Medical 
Imaging Archive Systems have become available today. Many of these new applications 
are making great impacts on the way we work and the way we live. Among the 
supporting technologies, a high-performance storage system is one of the most critical 
factors in these systems. 
 
RAID (Redundant Array of Independent Disks) has been playing a very important role in 
supporting high performance storage systems. It exists in storage systems ranging from 
one with a couple disks to those with several terabytes capacity. RAID uses data striping 
and parity information to provide higher I/O throughput on large data access and fault 
tolerance against disk failure. The implementation of RAID systems can be categorized 
into two different groups. The first category is the hardware RAID that uses additional 
RAID controllers to manage and process most of the required tasks in a RAID system. 
Those tasks include data parity computation and volume management. The other category 
of RAID uses the existing CPU(s) and memory on the system instead for all the 
necessary tasks (as opposed to the hardware RAID solution, we call it software RAID). 
From a user’s point of view, hardware RAID solutions require RAID controllers and 
increase the costs of a system; On the other hand, Software RAID solutions consume 
CPU and memory resource when performing RAID operations. Therefore, the 
applications running on the same hosts where the software RAID resides will suffer 
performance degradation. 
 
Fortunately, there is a new technology that provides an alternative solution between the 
expensive Hardware RAID solutions and the poorer performing Software RAID 
solutions. This new technology is called Disk-Based XOR. Disk-Based XOR is a 
technology utilizing the capability of computation on disks. By calculating the XOR 
results on disks, the CPU resource is no longer required for the computation-intensive 
XOR computation in RAID systems. Another big advantage of the Disk-Based XOR 
approaches is that the data amount needs to be transferred on storage channel can be 
greatly reduced by as much as 50%. With traditional RAID’s, both old data and old parity 
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data have to be sent to the host or a RAID controller for new parity construction. The new 
data and the new parity will be then transferred back to the target data disk and parity 
disk, respectively.  On the contrary, in a Disk-Based XOR RAID, only the new data and 
the XOR results of the new and old data will be transferred. Therefore, with Disk-Based 
XOR, up to twice as many disks could be connected to a storage channel without 
saturation under the similar load. This advantage has been proved with simulation results 
in an earlier study. 
 
However, there are challenges in implementing a Disk-Based XOR RAID system. 
Because XOR calculations of the new and old data will be executed on the data disk and 
the results need to be transferred to the parity disk, the results have to be saved on data 
disk before the results have been transferred successfully to the parity disk. It may have a 
big impact on performance. Researchers have found a potential deadlock situation with 
traditional single-threaded executions of SCSI commands in Disk-Based XOR RAID’s. 
Some researchers proposed a different RAID parity placement on disks to avoid such a 
problem. Another research showed the deadlock could be avoided with a small change on 
the FC-AL protocol. A multi-threaded SCSI command execution approach has been 
proposed not only to resolve the deadlock problem but also improve disk efficiency. The 
approach uses a conditionally prioritized disk command queue to resolve the deadlock 
problem. Simulation results were shown that such an approach outperformed a host-based 
RAID. 
 
While the proposed multi-threaded XOR approach seems promising, it does raise another 
issue: The proposed conditionally prioritized disk command queue execution may 
conflict with disk scheduling discipline designed to optimize disk efficiency. The conflict 
is due to the fact that free cache segments may not be always available for the next new 
read-modify-write command. In such a case, one of the other commands will be executed 
next instead. As a result, a disk may not execute commands as efficiently as it could have 
been. In this paper, we will investigate the performance impact of such scheduling 
conflict and propose two new disk scheduling algorithms. 
 
We choose a popular disk scheduling, Shortest Service Time First (or SSTF) as the base 
line for comparison. This method has been widely used and shown as having good 
performance in a dynamic environment where commands are arriving over time. In this 
paper, we call the SSTF scheduling a Greedy Algorithm. In this scheduling, each disk 
chooses the command with the shortest service time (seek time plus latency time) to be 
the next command. In the case when available cache segments are not enough for next 
read-modify-write operation, the command with the shortest service time among the other 
commands will be chosen. This is the same as in the proposed multi-threaded approach 
by other researchers in their study. The only difference is that in this paper, SSTF 
scheduling discipline will be used to choose from the list of executable commands. When 
no other commands are in the disk queue, a disk will be forced idle.  
 

Two reasons may cause disk cache to build-up. The first is due to congested data links. 
When the disks are putting data to cache faster than cache can transfer data to the storage 
channel, the cache will be filled. This could happen when too many disks are connected 
to a single storage channel. This situation can be easily avoided with proper sizing when 
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configuring a system if the traffic load can be realized. In Disk-Based XOR, there is 
another possible cause. Disk cache segments filled with XOR results need to be protected 
until the associated parity update is completed. Depending on the disk scheduling 
discipline, a parity update command may take a long time waiting in disk queue before it 
has been executed. The longer the waiting time is, the longer time the associated cache 
segments on the target disk remains to be saved and protected from being used by other 
commands. Our proposed approaches will intend to reduce the waiting time of the parity 
updates. 
 
The rest of this paper is organized as the following. In Section 2, we will provide a more 
detailed description of Disk-Based XOR operations. In Section 3, we will also describe in 
details the Greedy disk scheduling discipline and those two new enhancements. In 
Section 4, we will present our simulation results to show the performance of those three 
disk scheduling disciplines following an overview of our simulation model. Finally in 
Section 5, we will summarize what we found in this study and conclude the paper. 
 
2. Disk-Based XOR and Its Operations 
 
Three new SCSI commands (see [1]) have been created for supporting the Disk-Based 
XOR implementation. They are XD-write (or XDW), XP-write (or XPW), and XD-write 
extend (or XDW-ext). Each XDW is always associated with one XPW command. An 
XDW command consists of four operations. To begin, data (old data) will be read from 
target disk to its disk buffer (disk cache). At the same time, new data will be sending 
from the host to the target data disk. When both new and old data become available on 
disk buffer, exclusive-or operations will be executed on the new and old data. The new 
data will be written onto the disk. The results of the XOR operations, on the other hand, 
will remain on the disk buffer for later use by the associated XPW. The results need to be 
saved and protected on the disk buffer from being overwritten by other operations. Figure 
1 shows an XDW operation. 
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Figure 1: XDW Operation 
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After an XDW command is completed, the associated XPW command will be sent to the 
associated parity disk. The old parity will be read from the disk medium. At the same 
time, the XOR results of the associated XDW command stored earlier on the target data 
disk will be sent to the parity disk. When the XOR results and old parity information 
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become available, XOR operations will be executed. The newly derived XOR results will 
be written onto the parity disk. After the XPW has completed, the disk buffer storing the 
XOR results saved on the target data disk by the associated XDW will be freed. Figure 2 
shows the operations of an XPW command. 
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An XDW-ext command is a macro command that consists of one or more XDW 
commands followed by the associated XPW command(s). A read-modify-write operation 
on a data block can be fulfilled by an XDW-ext command. 
 
One big advantage of the Disk-Based XOR approach is that the data amount being 
transferred on storage channel can be greatly reduced by as much as 50%. With the 
traditional RAID's (either hardware or software RAID's), both old data and old parity 
data have to be firstly sent to the host or a RAID controller to construct the new parity 
data. The new data and the newly derived parity data will be transferred back to the target 
data disk and parity disk, respectively. In other words, if we need to update a block of 
data, there will be four blocks of data that are required to be transferred from and to the 
disks. As opposed to the traditional RAID’s, in a Disk-Based XOR RAID it only needs to 
transfer the new data and the XOR results of the XDW on the storage channel. Therefore, 
with Disk-Based XOR, a larger number of disks can be connected to a storage channel 
before saturating it with the same disk load. 
 
3. Two XPW-Enhanced Disk Scheduling Disciplines 
 
Many disk scheduling disciplines have been proposed to improve disk efficiency. For 
example, SCAN and C-SCAN ([2]) were proposed to reduce the seek time without 
moving back and forth from one request to another. Some other approaches considered to 
reduce both seek time and rotation latency (i.e. disk service time). Shortest Service Time 
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First (SSTF) is one of those approaches and has been widely used as the disk scheduling 
discipline. 
 
Before RAID was first introduced, disks operated individually and independently. There 
was no correlation between any two operations on different disks in terms of their access 
location on disks. RAID changed such independency. Updating a data block on one disk 
in a RAID will result in updating the associated parity block that has the same Logical 
Block Address (LBA) as the data blocks but resides on a different disk (parity disk). 
However, most disks in a RAID (except RAID-3) are still operating independently 
without coordination between disks. That is, reading the old data from a disk is 
performed independently with the reading of the associated old parity data from another 
disk. Because the new parity data is constructed by the old data, old parity data and the 
new data, intermediate results must be saved before both the old data and old parity are 
available. Without collaboration, the retrievals of the old data and old parity will be 
scheduled independently on two disks. As a result, the intermediate results may have to 
be saved for a long period of time. That is why most of the RAID systems require a large 
amount of memory either on the RAID controller or on the host. 
 
Such a big memory requirement is impractical in a Disk-Based XOR RAID. With a very 
limited buffer space on most disks, disk buffer can be filled quickly with Disk-Based 
XOR operations. When the disk buffer is full, no more commands will be executed until 
some buffer becomes available. A more severe condition is that a deadlock may happen 
when the buffer is full in Disk-Based XOR. That is why in [3], the proposed conditional 
prioritized disk scheduling forced a disk to choose a command other than XDW-ext after 
the occupancy of the disk buffer is higher than a predefined threshold. However, such an 
alternation on the disk scheduling will have an impact on the disk efficiency. The disk 
efficiency could be much lower when choosing a sub-optimal command.  
 
In the following, we will introduce two XDW-enhanced algorithms. Both of them are 
intended to reduce the probability of being required to make a dramatic change on disk 
scheduling. As for a baseline comparison, we use a greedy algorithm with the SSTF 
scheduling. The discussion of this Greedy scheduling approach is also included in the 
following sections. 
 
3.1 Greedy Disk Scheduling 
 
The Greedy algorithm chooses the command with the shortest service time (seek time 
plus latency time) to be the next command to be executed. This method has been widely 
used and performs well in dynamic environment where commands are arriving over time. 
We use this method as a baseline for comparison purpose. 
 
Because cache may be filled in Disk-Base XOR as discussed in the previous section, 
some modification is needed when applying the Greedy method to Disk-Based XOR 
RAID’s.  Each XDW-ext command requires at least two segments of cache to store data; 
one for the old data from disk and another for the new data from the host (assuming 
request data size is less than or equal to the segment size).  Hence, we need at least two 
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segments of free cache space in order to start execution of an XDW-ext command. When 
the number of available cache segments is small enough for the next XPW-ext command, 
we change the Greedy Algorithm and choose the command with the shortest service time 
from commands other than XDW-ext commands. The modified greedy method is used in 
this paper as a performance baseline to compare with the proposed (two) enhancements. 
 
As discussed in the previous section, one drawback of the Greedy method in Disk-Based 
XOR is that when it is running out of free cache space, it has to pick a sub-optimal 
command, or even worse, stay idle. In a case when there is no command other than 
XDW-ext in the disk queue, the disk has to stay idle until either a new non-XDW-ext 
command arrives or some cache space is freed.  
 
One straight forward way to reduce such inefficiency is to prevent it from happening. 
There are two reasons causing the cache to back up. The first is due to a congested link. 
When the disks are putting data to cache faster than cache can transfer data to the storage 
channel, the cache will be filled. This could happen when too many disks are connected 
to a single storage channel. This problem may be eliminated with proper system sizing 
when configuring a system.  
 
In Disk-Base XOR, there is another possibility. That is when the number of outstanding 
XDW-ext commands on a disk is close to the number of cache segments. An outstanding 
XDW-ext command is an XDW-ext command finishing its XDW part but waiting for its 
XPW part to be complete on another disk. Depending on the disk scheduling discipline, 
an XPW command may take a long time waiting in disk queue before it is executed. The 
longer the wait time, the longer  the cache segment on the data disk needs to be saved and 
protected from being used by other commands. 
 
After understanding the cause of a long-waiting outstanding XDW-ext command, we 
proposed two approaches to reduce the possibility of filled cache in Disk-Based XOR 
RAID’s. The details are in the next two subsections. 
 
3.2 An XPW Service Time Based Promotion Scheme (XPWT) 
 
The first approach is to selectively give an XPW the higher priority. By giving XPW 
commands higher priority, it helps to reduce its wait time in disk queue and as a result, 
the associated XDW-ext command can be completed and release the cache space it used 
earlier. However, selecting XPW should be made with caution such that the disk 
efficiency will not be over-compromised. We use a relative difference in disk service 
time as the criteria to give an XPW the higher priority. When an XPW has less than 
smallest service time plus the predetermined time δ available, the XPW with the smallest 
service time will be given the highest priority and will be executed next.  
 
We formulate the approach proposed above in the following. 
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Let CAll

min be the command with the shortest service time TAll
min 

Let CXPW
min be the XPW command with the shortest service time

among XPW commands TXPW
min.  

 
If TXPW

min - TAll
min <= δ then choose CXPW

min to be the next 
command. 
Otherwise choose CAll

min. 

 
Note that when δ equal to zero, this approach degenerates to the Greedy Algorithm. On 
the other hand, when δ becomes a large number, XPW commands will be given the 
higher priority all the time. For example, when δ is greater than or equal to the largest 
possible disk service time, the above method will always give the higher priority to XPW 
commands. 
 
3.3 An XPW Queue Length Based Promotion Scheme (XPWQ) 
 
The performance of the previous approach highly depends on the value of δ. Choosing a 
large δ may result in lower disk efficiency but reduce the number of XPW’s in disk 
queue; while choosing a small δ makes it closer to the Greedy Algorithm. Therefore, the 
optimal value of δ is difficult to determine in a dynamic situation. The second approach 
we are proposing in this paper is to give XPW commands the higher priority when the 
number of XPW commands on a disk reaches a certain threshold. The idea is based on 
the fact that with a uniformly distributed access among disks in a RAID and a large 
number of XPW commands in one disk queue, the more occupied disk cache will be on 
the other disks. Therefore, choosing an XPW to execute will likely help in releasing the 
disk cache buffer on another disk. Furthermore, when the threshold is chosen properly, 
there will be a set of XPW commands in disk queue to choose from when the number of 
occupied cache segments reaches the threshold. The larger the number of XPW 
commands to choose from, the closer the chosen XPW command to the optimal 
command. The detailed formulation of this approach is provided in the following. 

Let MaxNxpw be the threshold value of the number of XPW
commands.
Let Nxpw be the number of XPW commands in a disk command
queue.

If Nxpw <= maxNxpw then follow the Greedy Algorithm.
Otherwise, pick the XPW command with the shortest service time
of all XPW's.

 
Note that when the value of maxNxpw is set to zero, this approach will always choose an 
XPW if one exists. On the other hand, when the value of maxNxpw is set to infinity, then 
this approach will not give XPW a special higher priority at any case. Therefore it will 
degenerate to the Greedy Method. 
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4. Simulation Model and Results 
 
In this section, we will use simulation results to demonstrate the performance difference 
of the three disk-scheduling disciplines discussed in the previous section. For better 
understanding of the simulation results, we first provide an overview of our simulation 
models in the following subsection. 
 
4.1 Simulation Model 
 
We used a storage subsystem simulation model to simulate operations of a storage 
subsystem based on the Fibre Channel - Arbitration Loop (FC-AL) ([5]) protocol. The 
model consists of three major components: A disk and its disk cache component; A 
storage interface component that follows FC-AL protocol and controls data transfers 
to/from the storage channel; And a command generator component that simulates a host 
generating data requests. 
 
4.1.1 Disk and Disk Cache Model 
 
The disk model is based on an IBM Ultrastar XP 4.51GB disk. The implementation of 
this disk model employs zone bit recording and non-linear seek time functions for read 
and write operations using information from the disk manufacture in [6]. Table 1 shows a 
summary of disk parameters used in the simulation. 
 

Table 1: Disk Parameters 
Disk Parameters Value 

Capacity 4.51 GB 
Rotation Speed 7202.7 RPM 

Average rotation latency 4.17 ms 
Seek times 0.5 – 16.5 ms 

Transfer rate 5.53 – 7.48 MB/sec 
 
Disk cache is the buffer for temporarily storing data sent to/from the storage interface. It 
is partitioned into segments. Each segment consists of many 512-byte blocks. In our 
simulation model, each segment will be used by one command. The cache component 
also employs an LRU (Least Recently Used) cache segment replacement scheme. The 
parameters that the disk cache used in the model are summarized in Table 2. In our 
simulation, the number of segments is a controlled parameter. We used different numbers 
of segments in order to understand the impact of cache size and disk scheduling schemes 
on the system performance. 
 

Table 2: Disk cache parameters 
Disk Cache Parameter Values 

Block Size 512 bytes 
Number of segments Varied 

Segment size 64 KB 
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4.1.2 FC-AL Model 
 
We follow the FC-AL standard to model our disk interface. FC-AL is a protocol allowing 
Fibre Channel to operate in a loop topology. It is logically located between FC-1 and FC-
2. The FC-AL component in our model consists of both Loop Port State Machine 
(LPSM) and Fibre Channel Protocol for SCSI (FCP). LPSM defines the behavior of the 
FC-AL loop port. It includes an arbitration protocol which determines who can access the 
loop. It also includes a fairness protocol that enforces fair sharing of loop among all the 
nodes. FCP is one of the Fibre Channel mapping protocols (FC-4) which uses the service 
provided by FC-PH to transmit SCSI commands and data. It also transmits status 
information between a SCSI initiator and a SCSI target. More details about FC-AL can 
be found in [5] and [7]. Table 3 summarizes the parameters we used in the FC-AL model. 
 

Table 3: FC-AL Simulation parameters 
FC-AL Simulation Parameters Values Descriptions 
Link Speed 100 MB/Sec Bandwidth of an FC-AL loop 
Propagation Delay 3.5 ns Propagation delay between two nodes 
Per Node delay 6 word time The delay of forwarding a frame by 

interface 
Fairness algorithm Enabled The fairness protocol in its arbitration 

scheme 
 
4.1.3 Command Generator 
 
Command Generator is responsible for generating commands in our model. At the 
beginning of each simulation run, it will generate the number of commands indicated by 
the value of the maximum outstanding command parameter. When a command finishes, 
it will generate another command immediately to maintain the maximum outstanding 
commands in the system. The target disk of each command and the command’s access 
location (LBA) on the disk will be randomly assigned by the command generator. The 
Command generator is also responsible for sending the SCSI command response to the 
target disk and generating data to be written on disks. 
 
4.2 Simulation Results 
 
To better understand the impact of disk scheduling on Disk-Based XOR, we conducted 
simulations in many different scenarios. We compared three disk scheduling disciplines 
under different system loads with different data request sizes. We also compared them in 
small and large-scale storage systems. To predict the impact of the three different disk 
scheduling algorithms on the Disk-Based XOR RAID performance with the high-end 
disks, we further conducted simulations using a disk model with a two times 
improvement in the disk rotation and seek times. By conducting these different 
simulations, we hope to provide a better view of the impact of the disk scheduling on 
Disk-Based XOR RAID performance and therefore, to demonstrate its importance. 
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To better present our results, we will use an eight-disk FC-AL model as a base model. 
We will compare the performance by changing the system parameters such as system 
load, data request size, and number of disks while keeping the other parameters the same. 
As the base model, We will show the average command response time for 4KB read-
modify-write requests in the eight-disk FC-AL system. The total number of outstanding 
commands was 768. That is, the number of outstanding commands was maintained at 768 
after the simulation started. A new command was generated immediately after a previous 
command had completed. For the XPWT scheduling, the value δ was set to 3 
milliseconds. That is, an XPW command was given the higher priority over XDW 
commands if its disk service time is less than the smallest service time among all the 
XDW commands plus 3 milli-seconds. The maxNxpw value was set to the number of 
segments minus four. That is, the XPW commands in disk command queue will be given  
a higher priority when the total number of XPW commands in that disk command queue 
is greater than the number of cache segments minus four. For example, if the number of 
cache segments is twelve and there are more than eight XPW commands in disk queue, 
the next command will be chosen from those XPW commands in the queue. In such a 
case, the XPW with the shortest service time among the XPW commands will be chosen 
as the next command. 

 
The simulation result of the base model is shown in Figure 3. The XPWT Algorithm has 
the least average command response time among the three on all the cache segment sizes 
used in this study. It was 7% better than the Greedy algorithm when the number of 
segments is eight. The results of the XPWQ Algorithm varied with the number of 
segments. When the number of segments was eight, it performed closely to the XPWT 
Algorithm. When the number of segments increases, the response time fell between those 
of the Greedy Algorithm and the XPWT Algorithm. 
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Figure 3:Average command latency with 4KB requests and 768 outstanding commands. 

 
Figure 4 shows the system throughput achieved by the three scheduling algorithms on the 
base model. Since the system was loaded with a fixed number of outstanding commands 
(768 commands), the throughput was highly dependent on disk efficiency. The more 
efficient the disk is, the higher throughput it will generate. In Figure 4, we see that the 
XPWT Scheduling had the highest throughput among the three methods and had about 
7% higher throughput than that of the Greedy Method in certain cases. 
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Figure 4:Average system throughput with 4KB requests and 768 outstanding commands. 

 
Different System Loads 
 
To understand the impact of the three different scheduling methods under different levels 
of the system loads, we also investigated the performance difference with a different 
number of outstanding commands in the system. As opposed to 768 outstanding 
commands, we conducted simulations with 512 outstanding commands on the 8-disk 
model. Figure 5 shows the results with both 768 and 512 outstanding commands. With 
512 outstanding commands, the average command latency time was about two thirds of 
the time with 768 commands. The XPWT method outperformed the other two with 512 
outstanding commands in all the three numbers of segments.  The difference between the 
Greedy Method and XPWT Method was reduced from about 7% with 768 outstanding 
commands to about 5.4% with 512 outstanding commands. From the results, we found 
that the larger the number of outstanding commands, the higher the performance gap is 
between the XPWT method and Greedy Method. The major reason is that with more 
outstanding commands, it is more likely to execute an XDW command than an XPW 
command. When the cache segments are all filled, the disk will be forced to execute an 
XPW command. In such a case, the efficiency of the disk will be compromised. 
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Figure 5: Average command latency with and 512 vs. 768 outstanding commands with 4KB requests. 
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Another observation from the results is that the XPWQ method tended to be close to the 
performance of the XPWT Method when the number of segments is small. On the other 
hand, it tended to be close to the Greedy Method's performance when the number of 
segments is large. This is because when the number of segments is large, more XPW 
commands are allowed in a disk queue before they are given the higher priority. 
Therefore, most of the time, the XPWQ method may perform as the Greedy Method. 
While with a smaller number of segments, it is more likely to reach the maxNxpw 
threshold. Therefore, it performs closer to the XPWT Method. 
 
Large Scale Disk System 
 
We conducted simulations on a 32-disk FC-AL model to show the performance in a 
system with a larger number of disks. In order to eliminate the performance difference 
resulted from disk queuing time between the eight-disk and 32-disk model, we used the 
same system load on both systems. We used an average of 64 commands per disk. That 
is, we used 512 outstanding commands on the eight-disk model and 2048 commands on 
the 32-disk model. The results showed a similar trend to what we have observed in the 
eight-disk model (See Figure 6). The XPWT Method was still the best among the three. It 
is about 7% better than the Greedy Method when the number of segments was equal to 
eight. The XPWQ Method performed just as well as the XPWT Method when the number 
of segments was equal to eight. But the XPWT method outperformed the XPWQ method 
when the number of segments became larger. 
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Figure 6: Average command latency with 8 vs. 32 disks with 4KB requests. 

 
Large Request Size - 64KB:  
 
With a 4 KB request size, the actual transfer time is less significant compared to the disk 
seek time and latency time. Therefore, the disk scheduling has a greater impact on the 
disk efficiency. As the request size increases, the data transfer time becomes larger. The 
extent of the improvement with better disk scheduling may be different. To understand 
the performance of the three disk scheduling disciplines with larger requests, we also 
conducted simulations with 64 KB requests. The results are shown in Figure 7. 
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Figure 7: Average command latency with 4KB vs. 64KB. 

 
With 64 KB requests, we observed even better improvement than 4 KB requests with 
XOR-enhanced scheduling when the number of segments is small. For example, with 4 
KB requests, the improvement of the XPWT Method over the Greedy Method was about 
7% with 8-segment cache. While with 64 KB requests, the improvement was more than 
8%. Furthermore, the XPWQ Method outperformed both the other methods and had an 
improvement of close to 12% over the Greedy Method with an 8-segment cache. 
 
Performance with the Faster Disks 
 
Disk technologies have improved significantly over the past decades. Recently, disk 
density has been doubling better than every couple years. The disk rotation speed and 
seek time have also improved significantly. In this paper, we have compared the 
performance comparison of different disk scheduling disciplines with disk rotation speed 
that is used by most of the current off-the-shelf disk products (at the time this paper was 
written). To predict their performance with the faster disk speed, we also conducted 
simulation with faster disks. 
 
In order to reuse our disk model and its very detailed seed functions and zone-bit 
encoding, we modeled the next generation disks by changing the parameters in our 
existing disk model. With the targeted 15000 RPM next generation disk, we believe that 
by doubling the disk rotation speed and halving the seek time and data transfer time in the 
disk model we have, it will give us a close approximation of the model for the next high-
end disk. Figure 8 shows the performance comparison of the three scheduling methods 
with current and high-end disk models. The result is shown in Figure 8. The improvement 
of the XPWT method is almost 10% better than the Greedy method. The improvement of 
the XPWQ method fell between the Greedy method and XPWT method. It has about a 
6.7% improvement over the Greedy method at eight segments. 
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Figure 8: Average command latency with 1x vs. 2x disk speed with 4KB requests. 

 
 
Impact of δ value in XPWT method 
 
In the earlier section, we mentioned that choosing a good δ in XPWT could be difficult. 
To understand the impact of δ on the performance, we conducted more simulations with 
different δ values in different loads and cache segments. Figure 9 shows the results of the 
average latency when δ changes. The results show that when the number of outstanding 
commands is 768 and the number of segments is four, we should use a greater δ value. 
When the number of outstanding commands is 512, the optimal value falls when δ is 
around three to four. The results also demonstrate that when the number of segments is 
small, δ should be set to a greater value. In Figure 9, it seems that setting δ to 3 could 
provide a performance gain close to optimal except when the number of outstanding 
commands is 768 and the number of cache segments is four. 
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Figure 9: Average command latency with 1x vs. 2x disk speed with 4KB requests. 

 
5. Conclusion 
 
In this paper, we have discussed the uniqueness of Disk-Based XOR operations on disk 
scheduling and its impact on disk efficiency. We have proposed two XPW-enhanced disk 
scheduling disciplines that are designed to improve the disk efficiency on Disk-Based 
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XOR RAID’s. We have demonstrated their performance results by simulations. We have 
investigated the performance of the proposed XPW-enhanced disk scheduling as well as 
the SSTF approach serving as the baseline performance. We have conducted simulations 
under different scenarios such as different scales of storage system, different system 
loads, different request sizes, and even with high-end disk technologies. We have 
demonstrated using simulation results that the performance was consistently improved 
with those two XPW-enhanced approaches throughout all the cases. The results showed 
that the improvement could be as much as 12%. 
 
As the disk technologies continue to improve rapidly, it has been predicted that a one 
terabyte disk costing below one hundred dollars could be on the market in less than five 
years. With the price of disk going lower and lower, and the capacity of disks going 
higher and higher, it becomes more important to have a better RAID solution. Disk-
Based XOR provides a promising lower-cost high-performance alternative. We hope that 
the study we have presented in this paper could open a door to finding better RAID 
solutions. 
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Abstract

In-place reconstruction of delta compressed data allows information on devices with lim-
ited storage capability to be updated efficiently over low-bandwidth channels. Delta compres-
sion encodes a version of data compactly as a small set of changes from a previous version.
Transmitting updates to data as delta versions saves both time and bandwidth. In-place re-
construction rebuilds the new version of the data in the storage or memory space the current
version occupies – no additional scratch space is needed. By combining these technologies,
we support large-scale, highly-mobile applications on inexpensive hardware.

We present an experimental study of in-place reconstruction algorithms. We take a data-
driven approach to determine important performance features, classifying files distributed on
the Internet based on their in-place properties, and exploring the scaling relationship between
files and data structures used by in-place algorithms. We conclude that in-place algorithms are
I/O bound and that the performance of algorithms is most sensitive to the size of inputs and
outputs, rather than asymptotic bounds.

1 Introduction

We develop algorithms for data distribution and version management to be used for highly-mobile
and resource-limited computers over low-bandwidth networks. The software infrastructure for
Internet-scale file sharing is not suitable for this class of applications, because it makes demands
for network bandwidth and storage/memory space that many small computers and devices cannot
meet.

While file sharing is proving to be the new prominent application for the Internet, it is limited
in that data are not writable nor are versions managed. The many recent commercial and freely
available systems underscore this point, examples include Freenet [1] and GnuTella [2]. Writable
replicas greatly increase the complexity of file sharing – problems include update propagation and
version control.

Delta compression has proved a valuable tool for managing versions and propagating up-
dates in distributed systems and should provide the same benefits for Internet file sharing. Delta-
compression has been used to reduce latency and network bandwidth for Web serving [4, 20] and
backup and restore [6].

Our in-place reconstruction technology addresses one of delta compression’s major shortcom-
ings. Delta compression makes memory and storage demands that are not reasonable for low-cost,
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low-resource devices and small computers. In-place reconstruction allows a version to be updated
by a delta in the memory or storage that it currently occupies; reconstruction needs no additional
scratch space or space for a second copy. An in-place reconstructible delta file is a permuta-
tion and modification of the original delta file. This conversion comes with a small compression
penalty. In-place reconstruction brings the latency and bandwidth benefits of delta compression
to the space-constrained, mass-produced devices that need them the most, such as personal digital
assistants, cellular phones, and wireless handhelds.

A distributed inventory management system based on mobile-handheld devices is an archetypal
application for in-place technology. Many limited-capacity devices track quantities throughout
an enterprise. To reduce latency, these devices cache portions of the database for read-only and
update queries. Each device maintains a radio link to update its cache and run a consistency
protocol. In-place reconstruction allows the devices to keep their copies of data consistent using
delta compression without requiring scratch space, thereby increasing the cache utilization at target
devices. Any available scratch space can be used to reduce compression loss, but no scratch space
is required for correct operation. We observe that in-place reconstruction applies to both structured
data (databases) and unstructured data (files), because they manipulate a delta encoding, as opposed
to the original data. While algorithms for delta compressing structured data are different [9], they
employ encodings that are suitable for in-place techniques.

1.1 Delta Compression and In-Place Reconstruction

Recent developments in portable computing and computing appliances have resulted in a prolif-
eration of small network attached computing devices. These include personal digital assistants
(PDAs), Internet set-top boxes, network computers, control devices, and cellular devices. The data
contents of these devices are often updated by transmitting the new version over a network. How-
ever, low bandwidth channels and heavy Internet traffic often makes the time to perform software
update prohibitive.

Differential or delta compression [3, 13, 9, 8], encoding a new version of a file compactly as a
set of changes from a previous version, reduces the size of the transmitted file and, consequently,
the time to perform software update. Currently, decompressing delta encoded files requires scratch
space, additional disk or memory storage, used to hold a second copy of the file. Two copies of
the file must be available concurrently, as the delta file reads data from the old file version while
materializing the new file version in another region of storage. This presents a problem because
network attached devices often cannot store two file versions at the same time. Furthermore, adding
storage to network attached devices is not viable, because keeping these devices simple limits their
production costs.

We modify delta encoded files so that they are suitable for reconstructing the new version of the
file in-place, materializing the new version in the same memory or storage space that the previous
version occupies. A delta file encodes a sequence of instructions, or commands, for a computer
to materialize a new file version in the presence of a reference version, the old version of the file.
When rebuilding a version encoded by a delta file, data are both copied from the reference version
to the new version and added explicitly when portions of the new version do not appear in the
reference version.

If we were to attempt naively to reconstruct an arbitrary delta file in-place, the resulting output
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would often be corrupt. This occurs when the delta encoding instructs the computer to copy data
from a file region where new file data has already been written. The data the algorithms reads have
already been altered and the algorithm rebuilds an incorrect file.

We present a graph-theoretic algorithm for modifying delta files that detects situations where a
delta file attempts to read from an already written region and permutes the order that the algorithm
applies commands in a delta file to reduce the occurrence of conflicts. The algorithm eliminates
the remaining conflicts by removing commands that copy data and adding explicitly these data to
the delta file. Eliminating data copied between versions increases the size of the delta encoding
but allows the algorithm to output an in-place reconstructible delta file.

Experimental results verify the viability and efficiency of modifying delta files for in-place
reconstruction. Our findings indicate that our algorithm exchanges a small amount of compression
for in-place reconstructibility.

Experiments also reveal an interesting property of these algorithms that conflicts with algo-
rithmic analysis. We show in-place reconstruction algorithms to be I/O bound. In practice, the
most important performance factor is the output size of the delta file. This means that heuristics
for eliminating data conflicts that minimize lost compression are superior to more time efficient
heuristics that lose more compression. Any time saved in detecting and eliminating conflicts is lost
when writing a larger delta file out to storage.

2 Related Work

Encoding versions of data compactly by detecting altered regions of data is a well known problem.
The first applications of delta compression found changed lines in text data for analyzing the recent
modifications to files [11]. Considering data as lines of text fails to encode minimum sized delta
files, as it does not examine data at a fine granularity and finds only matching data that are aligned
at the beginning of a new line.

The problem of representing the changes between versions of data was formalized as string-
to-string correction with block move [24] – detecting maximally matching regions of a file at
an arbitrarily fine granularity without alignment. However, delta compression continued to rely
on the alignment of data, as in database records [23], and the grouping of data into block or line
granularity, as in source code control systems [22, 25], to simplify the combinatorial task of finding
the common and different strings between versions.

Efforts to generalize delta compression to un-aligned data and to minimize the granularity of
the smallest change resulted in algorithms for compressing data at the granularity of a byte. Early
algorithms were based upon either dynamic programming [19] or the greedy method [24, 21, 17]
and performed this task using time quadratic in the length of the input files.

Delta compression algorithms were improved to run in linear time and linear space. Algorithms
with these properties have been derived from suffix trees [27, 18, 16] and as a generalization of
Lempel-Ziv data compression [12, 13, 8]. Like algorithms based on greedy methods and dynamic
programming, these algorithms generate optimally compact delta encodings.

Recent advances produced algorithms that run in linear time and constant space [3]. These
differencing algorithms trade a small amount of compression, verified experimentally, in order to
improve performance.

Any of the linear run-time algorithms allow delta compression to scale to large input files
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Figure 1: Encoding delta files. Common strings are encoded as copy commands hf; t; li and new
strings in the new file are encoded as add commands ht; li followed by the string of length l of
added data.

without known structure and permits the application of delta compression to file system backup
and restore [6].

Recently, applications distributing HTTP objects using delta files have emerged [20, 4]. This
permits web servers to both reduce the amount of data transmitted to a client and reduce the latency
associated with loading web pages. Efforts to standardize delta files as part of the HTTP protocol
and the trend toward making small network devices HTTP compliant indicate the need to distribute
data to network devices efficiently.

3 Encoding Delta Files

Differencing algorithms encode the changes between two file versions compactly by finding strings
common to both versions. We term these files a version file that contains the data to be encoded
and a reference file to which the version file is compared. Differencing algorithms encode a file
by partitioning the data in the version file into strings that are encoded using copies from the
reference file and strings that are added explicitly to the version file (Figure 1). Having partitioned
the version file, the algorithm outputs a delta file that encodes this version. This delta file consists
of an ordered sequence of copy commands and add commands.

An add command is an ordered pair, ht; li, where t (to) encodes the string offset in the file
version and l (length) encodes the length of the string. The l bytes of data to be added follow the
command. A copy command is an ordered triple, hf; t; li where f (from) encodes the offset in the
reference file from which data are copied, t encodes the offset in the new file where the data are to
be written, and l encodes the length of the data to be copied. The copy command moves the string
data in the interval [f; f + l� 1] in the reference file to the interval [t; t+ l� 1] in the version file.

In the presence of the reference file, a delta file rebuilds the version file with add and copy
commands. The intervals in the version file encoded by these commands are disjoint. Therefore,
any permutation of the command execution order materializes the same output version file.

140



C1 C2

(a) Delta copy

conflict corrupt

C2C1

(b) In-place copy

Figure 2: Data conflict and corruption when performing copy command C1 before C2.

4 In-Place Modification Algorithms

An in-place modification algorithm changes an existing delta file into a delta file that reconstructs
correctly a new file version in the space the current version occupies. At a high level, our technique
examines the input delta file to find copy commands that read from the write interval (file address
range to which the command writes data) of other copy commands. The algorithm represents
potential data conflicts in a digraph. The algorithm topologically sorts the digraph to produce an
ordering on copy commands that reduces data conflicts. We eliminate the remaining conflicts by
converting copy commands to add commands. The algorithm outputs the permuted and converted
commands as an in-place reconstructible delta file. Actually, as described in more detail below, the
algorithm performs permutation and conversion of commands concurrently.

4.1 Conflict Detection

Since we reconstruct files in-place, we concern ourselves with ordering commands that attempt
to read a region to which another command writes. For this, we adopt the term write before read
(WR) conflict [5]. For copy commands hfi; ti; lii and hfj; tj; lji, with i < j, a WR conflict occurs
when

[ti; ti + li � 1] \ [fj; fj + lj � 1] 6= ;: (1)

In other words, copy command i and j conflict if i writes to the interval from which j reads
data. By denoting, for each copy command hfk; tk; lki, the command’s read interval as Readk =
[fk; fk + lk � 1] and its write interval as Writek = [tk; tk + lk � 1], we write the condition (1) for
a WR conflict as Writei \ Readj 6= ;. In Figure 2, commands C1 and C2 executed in that order
generate a data conflict (blacked area) that corrupts data when a file is reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add com-
mands. Add commands write data to the version file; they do not read data from the reference
file. Consequently, an algorithm avoids all potential WR conflicts associated with adding data by
placing add commands at the end of a delta file. In this way, the algorithms completes all reads
associated with copy commands before executing the first add command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself. Yet,
a single copy command’s read and write intervals intersect sometimes and would seem to cause a
conflict. We deal with read and write intervals that overlap by performing the copy in a left-to-right
or right-to-left manner. For command hf; t; li, if f � t, we copy the string byte by byte starting at
the left-hand side when reconstructing the original file. Since, the f (from) offset always exceeds
the t (to) offset in the new file, a left-to-right copy never reads a byte over-written by a previous
byte in the string. When f < t, a symmetric argument shows that we should start our copy at the

141



right hand edge of the string and work backwards. For this example, we performed the copies in a
byte-wise fashion. However, the notion of a left-to-right or right-to-left copy applies to moving a
read/write buffer of any size.

To avoid WR conflicts and achieve the in-place reconstruction of delta files, we employ the
following three techniques.

1. Place all add commands at the end of the delta file to avoid data conflicts with copy com-
mands.

2. Permute the order of application of the copy commands to reduce the number of write before
read conflicts.

3. For remaining WR conflicts, remove the conflicting operation by converting a copy command
to an add command and place it at the end of the delta file.

For many delta files, no possible permutation eliminates all WR conflicts. Consequently, we require
the conversion of copy commands to add commands to create correct in-place reconstructible files
for all inputs.

Having processed a delta file for in-place reconstruction, the modified delta file obeys the prop-
erty

(8j)

"
Readj \

 
j�1[
i=1

Writei

!
= ;

#
; (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and
transfers data from the original file.

4.2 CRWI Digraphs

To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy
commands in a digraph and topologically sort this digraph. A topological sort on digraph G =
(V;E) produces a linear order on all vertices so that if G contains edge

!

uv then vertex u precedes
vertex v in topological order.

Our technique constructs a digraph so that each copy command in the delta file has a cor-
responding vertex in the digraph. On this set of vertices, we construct an edge relation with a
directed edge

!

uv from vertex u to vertex v when copy command u’s read interval intersects copy
command v’s write interval. Edge

!

uv indicates that by performing command u before command v,
the delta file avoids a WR conflict. We call a digraph obtained from a delta file in this way a con-
flicting read write interval (CRWI) digraph. A topologically sorted version of this graph adheres
to the requirement for in-place reconstruction (Equation 2).

4.3 Strategies for Breaking Cycles

As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may con-
tain cycles, we enhance a standard topological sort to break cycles and output a total topological
order on a subgraph. Depth-first search implementations of topological sort [10] are modified
easily to detect cycles. Upon detecting a cycle, our modified sort breaks the cycle by removing a
vertex. When completing this enhanced sort, the sort outputs a digraph containing a subset of all
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vertices in topological order and a set of vertices that were removed. This algorithm re-encodes
the data contained in the copy commands of the removed vertices as add commands in the output.

As the string that contains the encoded data follows converted add, this replacement reduces
compression in the delta file. We define the amount of compression lost upon deleting a vertex
to be the cost of deletion. Based on this cost function, we formulate the optimization problem of
finding the minimum cost set of vertices to delete to make a digraph acyclic. A copy command is
an ordered triple hf; t; li. An add command is an ordered double ht; li followed by the l bytes of
data to be added to the new version of the file. Replacing a copy command with an add command
increases the delta file size by l � kfk, where kfk denotes the size of the encoding of offset f .
Thus, the vertex that corresponds to the copy command hf; t; li is assigned cost l � kfk.

When converting a digraph into an acyclic digraph by deleting vertices, an in-place conversion
algorithm minimizes the amount of compression lost by selecting a set of vertices with the smallest
total cost. This problem, called the FEEDBACK VERTEX SET problem, was shown by Karp [14]
to be NP-hard for general digraphs. We have shown previously [7] that it remains NP-hard even
when restricted to CRWI digraphs. Thus, we do not expect an efficient algorithm to minimize the
cost in general.

For our implementation of in-place conversion, we examine two efficient, but not optimal,
policies for breaking cycles. The constant-time policy picks the “easiest” vertex to remove, based
on the execution order of the topological sort, and deletes this vertex. This policy performs no
extra work when breaking cycles. The local-minimum policy detects a cycle and loops through all
vertices in the cycle to determine and then delete the minimum cost vertex. The local-minimum
policy may perform as much additional work as the total length of cycles found by the algorithm:
O(n2). Although these policies perform well in our experiments, we have shown previously [7]
that they do not guarantee that the total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations

Our algorithm for converting delta files into in-place reconstructible delta files takes the follow-
ing steps to find and eliminate WR conflicts between a reference file and the new version to be
materialized.

Algorithm

1. Given an input delta file, we partition the commands in the file into a setC of copy commands
and a set A of add commands.

2. Sort the copy commands by increasing write offset, Csorted = fc1; c2; :::; cng. For ci and cj,
this set obeys: i < j  ! ti < tj . Sorting the copy commands allows us to perform binary
search when looking for a copy command at a given write offset.

3. Construct a digraph from the copy commands. For the copy commands c1; c2; :::; cn, we
create a vertex set V = fv1; v2; :::; vng. Build the edge set E by adding an edge from vertex
vi to vertex vj when copy command ci reads from the interval to which cj writes:

�!

vivj  ! Readi \Writej 6= ;  ! [fi; fi + li � 1] \ [tj; tj + lj � 1] 6= ;:
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Figure 3: File counts and data size.

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the
digraph and breaks them. When breaking a cycle, select one vertex on the cycle, using either
the local-minimum or constant-time cycle breaking policy, and remove it. We replace the
data encoded in its copy command with an equivalent add command, which is put into set
A. The output of the topological sort orders the remaining copy commands so that they obey
the property in Equation 2.

5. Output all add commands in the set A to the delta file.

The resulting delta file reconstructs the new version out of order, both out of write order in the
version file and out of the order that the commands appeared in the original delta file.

5 Experimental Results

As we are interested in using in-place reconstruction to distribute software, we extracted a large
body of Internet available software and examined the compression and execution time performance
of our algorithm on these files. Sample files include multiple versions of the GNU tools and the
BSD operating system distributions, among other data, with both binary and source files being
compressed and permuted for in-place reconstruction. These data were examined with the goals
of:

� determining the compression loss due to making delta files in-place reconstructible;

� comparing the the constant-time and local-minimum policies for breaking cycles;

� showing in-place conversion algorithms to be efficient when compared with delta compres-
sion algorithms on the same data; and

� characterizing the graphs created by the algorithm.

In all cases, we obtained the original delta files using the correcting 1.5-pass delta compression
algorithm [3].

We categorize the delta files in our experiments into 3 groups that describe what operations
were require to make files in-place reconstructible. Experiments were conducted over more than
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Figure 4: Compression performance

34,000 delta files totaling 6.5MB (Megabytes). Of these files (Figure 3), 63% of the files contained
cycles that needed to be broken. 29% did not have cycles, but needed to have copy commands
reordered. The remaining 8% of files were trivially in-place reconstructible; i.e., none of the copy
commands conflicted. For trivial files, performing copies before adds creates an in-place delta.

The amount of data in files is distributed differently across the three categories than are the file
counts. Files with cycles contain over 4MB of data with an average file size of 31.4KB. Files that
need copy commands reordered hold 1.9MB of data, with an average file size of 11.6KB. Trivially
in-place reconstructible files occupy 585KB of data with an average file size of 10.2KB.

The distribution of files and data across the three categories confirms that efficient algorithms
for cycle breaking and command reordering are needed to deliver delta compressed data in-place.
While most delta files do not contain cycles, those that do have cycles contain the majority of the
data.

We group compression results into the same categories. Figure 4(a) shows the relative size of
the delta files and Figure 4(b) shows compression (size of delta files as a fraction of the original
file size). For each category and for all files, we report data for four algorithms: the unmodi-
fied correcting 1.5-pass delta compression algorithm [3] (HPDelta); the correcting 1.5-pass delta
compression algorithm modified so that code-words are in-place reconstructible (IP-HPDelta); the
in-place modification algorithm using the local-minimum cycle breaking policy (IP-Lmin); and the
in-place modification algorithm using the constant-time cycle breaking policy (IP-Const).

The HPDelta algorithm is a linear time, constant space algorithm for generating delta com-
pressed files. It outputs copy and add commands using a code-word format similar to industry
standards [15].

The IP-HPDelta algorithm is a modification of HPDelta to output code-words that are suitable
for in-place reconstruction. Throughout this paper, we have described add commands ht; li and
copy commands hf; t; li, where both commands encode explicitly the to t or write offset in the
version file. However, delta algorithms that reconstruct data in write order need not explicitly
encode a write offset – an add command can simply be hli and a copy command hf; li. Since
commands are applied in write order, the end offset of the previous command implies the write
offset of the current command implicitly. The code-words of IP-HPDelta are modified to make
the write offset explicit. The explicit write offset allows our algorithm to reorder copy commands.
This extra field in each code-word introduces a per-command overhead in a delta file. The amount
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Figure 5: Run-time results

of overhead varies, depending upon the number of commands and the original size of the delta file.
Encoding overhead incurs a 3% compression loss over all files.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-Lmin algorithms. They run
the IP-HPDelta algorithm to generate a delta file and then permute and modify the commands
according to our technique to make the delta file in-place reconstructible. The IP-Const algorithm
implements the constant-time policy and the IP-Lmin algorithm implements the local-minimum
policy.

Experimental results indicate the amount of compression lost due to in-place reconstruction and
divides the loss into encoding overhead and cycle breaking. Over all files, HPDelta compresses
data to 12.9% its original size. IP-HPDelta compresses data to 15.9%, losing 3% compression
to encoding overhead. IP-Const loses an additional 3.4% compression by breaking cycles for a
total compression loss of 6.4%. In contrast, IP-Lmin loses less than 0.5% compression for a total
loss of less than 3.5%. The local-minimum cycle breaking policy performs excellently in practice,
because compression losses are small when compared with encoding overheads. With IP-Lmin,
cycle breaking accounts for less than 15% of the loss. IP-Const more than doubles the compression
loss.

For reorder and trivial in-place delta files, no cycles are present and no compression lost. En-
coding overhead makes up all lost compression – 0.5% for trivial delta files and 1.8% for reordered
files.

Files with cycles exhibit an encoding overhead of 3.8% and lose 5.4% and 0.7% to cycle break-
ing for the IP-Const and IP-Lmin respectively. Because files with cycles contain the majority of
the data, the results for files with cycles dominate the results for all files.

In-place algorithms incur execution time overheads when performing additional I/O and when
permuting the commands in a delta file. An in-place algorithm must generate a delta file and then
modify the file to have the in-place property. Since a delta file does not necessarily fit in memory,
in-place algorithms create an intermediate file that contains the output of the delta compression
algorithm. This intermediate output serves as the input for the algorithm that modifies/permutes
commands. We present execution-time results in Figure 5(a) for both in-place algorithms – IP-
Const and IP-Lmin. IP-Lmin and IP-Const perform all of the steps of the base algorithm (IP-
HPDelta) before manipulating the intermediate file. Results show that the extra work incurs an
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Figure 6: Run-time results

overhead of about 75%. However, figure 5(b) shows that almost all of this overhead comes from
additional I/O. We conclude that the algorithmic tasks for in-place reconstruction are small when
compared with the effort compressing data (about 10% the run-time) and miniscule compared to
the costs of performing file I/O.

Despite inferior worst-case run-time bounds, the local-minimum cycle breaking policy runs
faster than the constant-time policy in practice. Because file I/O dominates the run-time costs and
because IP-Lmin creates a smaller delta file, it takes less total time than the theoretically superior
IP-Const. In fact, IP-Const spends 2.2% more time performing I/O as a direct result of the files
being 2.9% larger. IP-Lmin even uses slightly less time performing computation than IP-Const,
which has to manipulate more data in memory.

Examining run-time results in more detail continues to show that IP-Lmin outperforms IP-
Const, even for the largest and most complex input files. In Figure 6, we see how run-time perfor-
mance varies with the input file size and with the size of the graph the algorithm creates (number
of edges and vertices); these plots measure run time by data rate – file size (bytes) divided by run
time (seconds).

Owing to start-up costs, data rates increase with file size up to a point, past which rates tend
to stabilize. The algorithms must load and initialize data structures. For small files, these costs
dominate, and data rates are lower and increase linearly with the file size (Figure 6(a)). For files
larger than 2000 bytes, rates tend to stabilize, exhibiting some variance, but neither increasing or
decreasing as a trend. These results indicate that for inputs that amortize start-up costs, in-place
algorithms exhibit a data rate that does not vary with the size of the input – a known property of
the HPDelta algorithm [3]. IP-Lmin performs slightly better than IP-Const always.

The performance of all algorithms degrades as the size of the CRWI graphs increase. Figure
6(b) shows the relative performance of the algorithms as a function of the number of vertices, and
Figure 6(c) shows this for the number of edges. For smaller graphs, performance degrades quickly
as the graph size increases. For larger graphs, performance degrades more slowly. The graph size
corresponds directly to the number of copy commands in a delta file. The more commands, the
more I/O operations the algorithm must execute. Often more vertices means more small I/O rather
than fewer large I/O, resulting in lower data rates.

Surprisingly, IP-Lmin continues to out-perform IP-Const even for the largest graphs. Analysis
would indicate that the performance of IP-Lmin and IP-Const should diverge as the number of
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Figure 7: Edges in delta files that contain cycles.

edges increase. But no evidence of divergent performance exists. We attribute this to two factors:
(1) graphs are relatively small and (2) all algorithms are I/O bound.

In Figure 7, we look at some statistical measures of graphs constructed when creating in-
place delta files, restricted to those graphs that contain cycles. While graphs can be quite large, a
maximum of 11503 vertices and 16694 edges, the number of edges scales linearly with the number
of vertices and less than linearly with input file size. The constructed graphs do not exhibit edge
relations that approach the O(jV j2) upper bound. Therefore, data rate performance should not
degrade as the number of edges increases. For example consider two files as inputs to the IP-Lmin
algorithm – one with a graph that contains twice the edges of the other. Based on our result, we
expect the larger graph to have twice as many vertices and encode twice as much data. While the
larger instance does twice the work breaking cycles, it benefits from reorganizing twice as much
data, realizing the same data rate.

The linear scaling of edges with vertices and file size matches our intuition about the nature
of delta compressed data. Delta compression encodes multiple versions of the same data. There-
fore, we expect matching regions between these files (encoded as edges in a CRWI graph) to have
spatial locality; i.e., the same string often appears in the same portion of a file. These input data
do not exhibit correlation between all regions of a file which would result in dense edge relations.
Additionally, delta compression algorithms localize matching between files, correlating or syn-
chronizing regions of file data [3]. All of these factors result in the linear scaling that we observe.

6 Conclusions

We have presented algorithms that modify delta files so that the encoded version may be recon-
structed in the absence of scratch memory or storage space. Such an algorithm facilitates the dis-
tribution of software to network attached devices over low bandwidth channels. Delta compression
lessens the time required to transmit files over a network by encoding the data to be transmitted
compactly. In-place reconstruction exchanges a small amount of compression in order to do so
without scratch space.

Experimental results indicate that converting a delta file into an in-place reconstructible delta
file has limited impact on compression, less than 4% in total with the majority of compression
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loss from encoding overheads rather than modifications to the delta file. We also find that for
bottom line performance keeping delta files small to reduce I/O matters more than execution time
differences in cycles breaking heuristics, because in-place reconstruction is I/O bound. For overall
performance, the algorithm to convert a delta file to an in-place reconstructible delta file requires
less time than generating the delta file in the first place.

In-place reconstructible delta file compression provides the benefits of delta compression for
data distribution to an important class of applications – devices with limited storage and memory.
In the current network computing environment, this technology decreases greatly the time to dis-
tribute content without increasing the development cost or complexity of the receiving devices.
Delta compression provides Internet-scale file sharing with improved version management and up-
date propagation, and in-place reconstruction delivers the technology to the resource constrained
computers that need it most.

7 Future Directions

Detecting and breaking conflicts at a finer granularity can reduce lost compression when breaking
cycles. In our current algorithms, we eliminate cycles by converting copy commands into add
commands. However, typically only a portion of the offending copy command actually conflicts
with another command; only the overlapping range of bytes. We propose, as a simple extension,
to break a cycle by converting part of a copy command to an add command, eliminating the graph
edge (rather than a whole vertex as we do today), and leaving the remaining portion of the copy
command (and its vertex) in the graph. This extension does not fundamentally change any of our
algorithms, only the cost function for cycle breaking.

As a more radical departure from our current model, we are exploring reconstructing delta files
with bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This
formulation, suggested by Martı́n Abadi, allows an algorithm to avoid WR conflicts by moving
regions of the reference file into a fixed size buffer, which preserves reference file data after that
region has been written. The technique avoids compression loss by resolving data conflicts without
eliminating copy commands.

Reconstruction in bounded space is logical, as target devices often have a small amount of
available space that can be used advantageously. However, in-place reconstruction is more gen-
erally applicable. For bounded space reconstruction, the target device must contain enough space
to rebuild the file. Equivalently, an algorithm constructs a delta file for a specific space bound.
Systems benefit from using the same delta file to update software on many devices. For exam-
ple, distributing an updated product list to many PDAs in the same sales force. In such cases,
in-place reconstruction offers a lowest common denominator solution in exchange for a little lost
compression.

We also are developing algorithms that can perform peer-to-peer style delta compression [26]
in an in-place fashion. This allows delta compression to be used between two versions of a file
stored on separate machines and is often a more natural formulation, because it does not require a
computer to maintain the original version of data to employ delta compression. This works well
for file systems, most of which do not handle multiple versions.

Our ultimate goal is to use in-place algorithms as a basis for a data distribution system. The
system will operate both in hierarchical (client/server) and peer-to-peer modes. It will also conform
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to Internet standards [15] and, therefore, work seamlessly with future versions of HTTP.
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Abstract

Cryptographic file systems typically provide security by encrypting entire files or directo-
ries. This has the advantage of simplicity, but does not allow for fine-grained protection
of data within very large files. This is not an issue in most general-purpose systems, but
can be very important in scientific applications where some but not all of the output data
is sensitive or classified. We present a more flexible approach that uses common crypto-
graphic techniques to secure any arbitrary-sized region of data within a file, even if the
region is logically non-contiguous. This approach, called intra-file encryption, allows mix-
ing data of different sensitivity in a single file. This benefits users by permitting related
data belonging to a single file to be kept together rather than separating data of different
security needs. Supporting intra-file encryption requires additional file metadata and key
management services. For file systems that store metadata and files on the same server, the
management of extra metadata poses little problem beyond storage overhead. However,
for high-performance network-attached file systems, the additional metadata poses greater
challenges related to data placement and security. This paper describes the intra-file se-
curity encryption technique with discussion of including support for it in a distributed file
system.

1 Introduction

Traditionally, file system security uses an “all-or-nothing” approach—all of a file is en-
crypted identically. This approach is sufficient in situations where a file must be accessed
in its entirety to make sense for a user or application. However, there are many cases where
a user should only have access to some of the data in a file. A large file used for scientific
modeling might contain mostly unclassified information, with some sections of classified
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data. Other examples include a satellite map of a region containing military zones, a speci-
fication for a vehicle with sensitive information, or a recipe with a secret ingredient. Using
current techniques, users that desire different levels of security must use different files,
complicating access for all users.

In this paper, we introduceintra-file security—a flexible approach to providing end-to-end
encryption in a file system. It allows users to encrypt extents of files independently from
other extents, so that a single file may contain one or more secure regions. A file system
incorporating intra-file security transparently handles most operations, such as automatic
decryption and key management. The result is a file system with little extra programming
or runtime overhead for the added functionality. Reads are entirely managed by the file
system and writes occur via two separate but nearly identical function calls for unencrypted
and one for encrypted data.

Flexible end-to-end encryption technology is becoming increasingly important as systems
use distributed storage architectures. High-performance computer systems deal with data
sets of tremendous size; files used in scientific computing and data-mining applications
commonly extend beyond the capabilities of single storage devices. Distributed storage
architectures provide one solution for the demands of increased storage needs. By spread-
ing file system data over multiple network nodes, distributed storage provides high data
rates through parallelism, and large, scalable storage capacity with a capability for fault
tolerance through redundancy. However, distributing storage also increases the number of
potential points for network intrusion, making data susceptible to security breaches. To
secure sensitive data, networked file servers should store and transmit only encrypted data,
which is decoded by clients with cryptographic keys. Many end-to-end encryption tools
exist, and the least cumbersome for users are those built into the file system [1]. Such file
systems transparently decode encrypted data for users with proper permission rights.

Existing cryptographic file systems secure data on a per-directory [1] or per-file [4] basis.
This level of granularity is not flexible enough to support applications that benefit from
encrypting smaller regions within files. If information is only encrypted on a per-file basis,
then a set of data containing a mix of sensitive and unclassified data must be stored in two
or more files, one for each security level. However, in some cases it is beneficial to keep
data in a single file; users and tools can manage the data as a single entity in the file system,
and the same applications may use secure and insecure data sets. Because they encrypt
whole files or file systems, existing cryptographic file system techniques cannot address
this problem.

Intra-file security offers additional security by allowing more fine-grained control file ac-
cess, breaking a file into regions of differing security without compromising single-file
semantics. This allows the system to transparently handle security operations, making the
security invisible to authorized users and thus more likely to actually be used. In order
to implement intra-file security, we introduce security-related metadata, and provide a key
management solution that allows flexibility in security and access policy.

Section 2 introduces the intra-file security (IFS) encryption algorithm. The algorithm,
based on well-known cryptographic techniques, may be implemented stand-alone or as
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part of a larger system, such as a file system. Section 3 describes how to integrate IFS
into a distributed object-based file system. Sections 4 and 5 discuss some possible IFS
applications and related work.

2 Intra-File Security

Intra-file security (IFS) allows encryption to be applied to segments as small as a byte or as
large as an entire file; multiple encrypted segments need not be logically contiguous within
the file. In an IFS file, encrypted data is stored logically in-place, and occupies the physical
file blocks that would have contained the unencrypted data. To support efficient random
file access, we independently encrypt data from each logical file block, so there is no de-
pendence on information from other blocks. Consider the file shown in Figure 1, which
contains a non-contiguous region that must be kept secure. The region spans one entire
logical block (L1), and two partial blocks (L2 andL3). As mentioned above, this region is
not independently encryptable using standard techniques. With IFS, this non-contiguous
region of the file can be encrypted independently and made available only to appropriate
users. Furthermore, because the encrypted data is left in place, all programs written to work
with the full data set (including legacy applications) can still function properly. All regions
of the data, encrypted and unencrypted alike, will still be readable except that the encrypted
regions will not contain the secured data values but will instead contain apparently random
values.

L L L L

Secure Region

Insecure Region

0 1 2 3

Figure 1: A single logical file address space broken into secure and insecure regions.

The encryption technique may use any block or stream cryptographic algorithm. Because
the size of encrypted data in a file block may not match cipher block sizes, the algorithm is
well-suited to stream ciphers, but can also be made to work with block ciphers with little
additional effort. The flexibility of choosing any cryptographic algorithm allows system
builders to vary encryption strength, conform with specific standards, or integrate off-the-
shelf hardware chips into the system. The choice of block or stream cipher presents only a
slight variation on the technique, so we present methods for both.

2.1 Block Cipher Technique

In an IFS file, secure segments may reside anywhere within a block, and may not be phys-
ically contiguous within a block. This causes a problem for block encryption algorithms
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that expect to receive contiguous blocks of data for encryption. Our system combines all
segments within a block into a temporary buffer before encryption, encrypts the buffer,
and then redistributes the cipher back into the positions of the original plain-text segments.
This process uses scatter-gather, minimizing actual copies to the bytes at the start and end
of a region necessary to pad out the encryption block (often 64–128 bits), and uses pointer
manipulation to do the rest of the encryption in place.

Because the output of a block algorithm is a fixed size, and the data may not necessarily
match this size, we employcipher-text stealing[2] to match encrypted data sizes to unen-
crypted sizes. Cipher-text stealing allows us to output ciphers of the same size as the input,
even if they do not match the cipher block size. The encrypted data is then redistributed
back to the file block in the area originally occupied by its plain-text counterpart. By using
initialization vectors(IVs) [13] andcipher block chaining(CBC) [13], we also obscure
data containing repeated patterns (such as headers) The IV must be unique for each block
in a storage device but need not be secret.

2.2 Stream Cipher Technique

By using a stream cipher such as RC4 or SEAL [13], IFS does not need to assemble data
into temporary buffers or use pointer manipulation to collect bytes for encryption; instead,
data may be encrypted in place. Stream ciphers such as RC4 claim a speed improvement
of 10 times over DES, further improving performance. Applying feedback chaining to the
stream hides data patterns—we use an IV to initialize the feedback chain, therefore the
metadata structure does not differ from block mode encryption.

2.3 Encryption Metadata

By default, all data in the file is assumed to be unencrypted. In order to locate the secure
data within the file, and to find the encryption parameters, each encrypted block requires
a description of the location of secure segments and initialization vector information. In
IFS, the structure holding this data is a security node, ors-node, shown in Figure 2. The
size of an s-node depends on the number and layout of secure regions. A secure region is
defined by an extent consisting of a start and a length; the start is relative to the start of the
previous secure region, or the start of the block for the first region. Because many secure
regions are formed of repeating patterns of data of varying levels of security, there is also a
shorthand way of representing simple patterns of secure regions that are a fixed length and
fixed distance apart. This is accomplished by specifying a repetition count associated with
the offset and length specified in the secure region specification.

In addition to information about the location of secure regions, s-nodes must store the in-
formation necessary to encrypt and decrypt the secured data. This includes key information
for the region as well as an initialization vector (IV)—a number used to seed the encryption
algorithm when it operates on the encrypted data in the block. An IV is necessary to ensure
that encrypted regions with the same data do not result in the same ciphertext, providing
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Unencrypted

Encrypted: access by group A

Encrypted: access by group B

Start Length Count s-group

512 256 1 A
256 256 1 B
512 256 1 A
256 256 1 B
768 128 1 A
256 128 3 A

Figure 2: A 4 KB block encrypted with intra-file security and its associated security node
(s-node). Note that the last entry in the s-node has a repeat count of 3, representing the
three repeated secure regions near the end of the file. The first of the four regions must be
represented separately because its distance from the previous region is larger than that of
the following three regions.

insight about the file’s structure or contents that might prove useful to an intruder. The IV
must differ for each file block, and thus is a function of the logical block number as well
as per-file values such as file identifier. If the IV for a block can be determinedsolelyfrom
the logical block number and per-file constants, it need not be stored in the s-node because
it can be calculated at runtime.

Pointers to keys, on the other hand, must always be stored in the s-nodes. It might be possi-
ble to avoid storing key information in the s-node by simply referring to key information for
the whole file; however, this approach would not permit encrypting portions of a file with
different keys. Instead, we store ans-groupidentifier for each secure region; this identifier
is translated by the system into a key using the approach discussed in Section 3.1.

There is one s-node structure for each logical file block that contains any encrypted seg-
ments. Note, however, that it is possible to group file system blocks together to reduce the
amount of storage required by s-nodes; this technique is particularly effective for files that
require large numbers of identically-sized regions with constant spacing. In such files, a
few secure region descriptors can suffice for a large number of secure regions, reducing
the file system overhead for IFS. Because s-nodes are allocated by the file system from the
same pool of blocks used for regular files, reducing the size of security information allows
more data to be stored in the file system.
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It should be noted that while they are adequate for their intended purpose, the s-node struc-
ture described in this section could be improved in several ways. The s-node as depicted
in Figure 2 is simple to implement, but uses space inefficiently. Instead, s-nodes could
be compressed using gamma compression [14] or other techniques for compressing small
numbers. Additionally, an IFS system could attempt to recognize and represent more com-
plex encryption patterns, albeit at the cost of added complexity.

3 Integration with an OBSD File System

Although IFS may be used in any type of file system, we present a design to implement
intra-file security for a file system based on Object Based Storage Devices (OBSDs). We
are proposing the use of OBSDs for high-performance network-attached storage devices;
this approach has similarities to Network-Attached Secure Disks (NASD) [3]. An OBSD-
based file system is designed for high-performance computing workloads—precisely the
kinds of applications that benefit from intra-file security. Because OBSDs require strong
security in order to keep data safe in storage and transit [7], we expand the end-to-end
encryption capabilities by incorporating IFS.

OBSD-based storage systems have the potential to improve both file system performance
and functionality by building a high-performance storage system from inexpensive storage
components connected by high-speed networks. The main hardware component of the stor-
age system is an object-based storage device—one or more disks (or other storage devices)
managed by a single CPU and seen by the file system as a single device. Data is distributed
across many OBSDs, with high bandwidth coming from large numbers of concurrently
operating OBSDs.

Each OBSD is responsible for managing and allocating its own storage; requests to an
OBSD are of the form “write (or read) this range of bytes from file X,” with low-level
placement of the data and free space management left to the OBSD. High-level information
such as the striping pattern across OBSDs and translation of names to file identifiers are
left to a metadata server (MS), which is accessed by the user only when a file is opened or
closed. This file system design is shown in Figure 3.

The key advantage of OBSDs in a high-performance environment is the ability to delegate
low-level block allocation and synchronization for a given segment of data to the device
on which it is stored, leaving the file system to decide only on which OBSD a particular
segment should be placed. In such a distributed file system, s-nodes are stored physically
near the blocks they describe, avoiding extra traffic to central servers on distributed storage
systems and amortizing I/O usage among the devices. OBSDs use their own allocation poli-
cies to manage local data, including file and s-node data, placing them for efficiency within
physical storage devices. Because s-nodes do not contain secrets, end-to-end encryption
is provided to users without any extra involvement of the OBSD—the OBSD sends all file
data and s-nodes in the clear on insecure networks. The security of encrypted data lies with
the key management policy.

158



OBSD OBSD

OBSD OBSD OBSD

Metadata
Server
Cluster

Client Systems

Storage Server
Components

High performance backbone 
with 10-100 GB/sec aggregate 
bandwidth

Multiple
Access Paths 
to Redundant
Backbone.

Several Thousand OBSDs

Wide Area
Clients

Tera-scale
Computers

Visualization
Systems

Figure 3: OBSD storage system architecture.

3.1 Authentication and Key Management

An authentication system is required for file system security, regardless of end-to-end en-
cryption capabilities. Since we are focusing on support for intra-file encryption, a full
development of the authentication system is beyond the scope of this paper. However, we
rely on an authentication system for distribution of encryption keys, so we briefly describe
how such a system may be implemented.

A major role of a metadata server (MS) is to control access to the file system. When
users wish to open a file, the MS checks file permissions before granting access. As a
first step, client software authenticates a user’s identity, using standard authentication tech-
niques such as Kerberos [9] or cryptographic hashes [7, 10]. The MS proceeds to check
permission for a requested file operation using the file system’s access control mechanism.
However, OBSDs handle read and write requests directly; in order to enforce access rights,
OBSDs must also check identities and permissions as well. The overhead of maintaining
and checking access permissions at each OBSD defeats the high-performance requirement,
so an OBSD uses a more efficient method to check the validity of a client’s request. The
MS generatestokenscontaining encoded access rights during open requests, and sends
them to clients along with the file’s metadata. Clients present these tokens with their re-
quests to OBSDs. By checking the permissions encoded in the token, an OBSD determines
the validity of the request. Tokens are equivalent tocapabilitiesused in NASD for the same
purpose [4, 3]. In IFS, security information is included in the forwarded tokens.
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Access to encrypted segments is based on IFS group permissions, which we calls-groups.
An s-group contains a list of users and/or groups that may use the key for an encrypted
segment; the creator of an encrypted segment specifies s-group members during the initial
write. A key server (KS) manages s-groups separately from file-access group permissions
normally associated with file services; the goal is to remove management of encryption
from traditional file system administration. The KS is responsible for checking s-group
permissions, and generating and storing keys. From a user’s viewpoint, calls to the MS
involve both the MS and the KS, whether they reside on single or concurrent machines.

3.2 File I/O Interface

IFS uses standard POSIX file semantics by instrumenting interface libraries to handle secu-
rity operations transparently. However, supporting encryption requires some new functions
that allow writing of encrypted segments. Applications writingonly unencrypted data and
readinganydata use the normal write and read function interfaces.

Reading encrypted data is transparent to the user. When reading data, users with a key
see decrypted data when they read data; thus, applications reading data stored with IFS do
not need any modifications, though they must be capable of dealing with garbage data in
the data file—reads from encrypted segments of a file appear as random bits if the user
lacks the proper key. If the user has the necessary key, the file system client transparently
decrypts the file using keys supplied with authentication tokens. Only users with the proper
key may decrypt secure segments and view the contents; the encoding of the token tells the
OBSD whether or not to send s-nodes with data, so extra traffic is avoided when possible.

Under IFS, the interface to the file system is extended to support encrypted writes. En-
crypted segments remain read-only unless the user hasencrypted write access, which is
granted through IFS s-group permissions. Even for users with permission, encrypted writes
are explicit. Two new system calls support encrypted writes. One function translates an s-
group specification into an integer identifier. The identifier is used in subsequent calls to
thesecure write function, which is identical to the standard ‘C’write function ex-
cept for this additional argument. When writing encrypted segments, the file system client
creates s-nodes for the corresponding blocks, and sends the s-nodes to the OBSD along
with the blocks. When over-writing data in blocks already allocated to the file, the client
must fetch and update the existing s-node (read-modify-write operation).

Unencrypted write requests to file blocks containing encryption must be carefully con-
trolled, because users without encryption rights cannot overwrite the encrypted region of
the block. To protect the integrity of encrypted data, it is impossible for users to write to en-
crypted segments using the traditional write function call. In order to minimize the latency
of unencrypted writes, the OBSD quickly caches all data on writes, and during periods
of inactivity discards changes to encrypted segments before committing the write. Essen-
tially, this makes all encrypted segments read-only unless invoking thesecure write
function. This policy does not impact blocks without encrypted segments, but it effects the
coherency of blocks that do—until the write is fully committed, multiple copies of a block
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reside in the file system. As a trade-off between performance and safety, we prefer that
writes to encrypted segments do not occur unless made explicit, even for users with a key.

4 IFS Applications

To support encryption of data within existing unencrypted files that have been migrated
to an IFS file system or written with non-IFS legacy applications, an IFS-capable copy
program can be provided to encrypt the appropriate portions of the file. This program
would take as input an unencrypted file and a specification of the regions to be encrypted.

Databases that use a single large flat-file could easily benefit from IFS by encrypting those
fields of the database that must be kept secret, while still maintaining single-file semantics
for the whole database. Most databases support encrypted fields by simply supplying keys
for particular fields; however, this approach requires a reasonable amount of support from
the database system or the database queries to remain transparent to users. By using IFS,
this process could be made transparent, particularly if databases exchanged information
with the file system.

Many very large files used in military and government scientific work will also benefit from
IFS. Removing the need to fragment files that naturally require multiple levels of security
will simplify applications as well as data management; no longer will users need to create
several files with different encryption levels and keep track of which ones are related and
how. Eliminating fragmentation ensures high-performance sequential and random access.
Importantly, legacy applications can transparently be made IFS-capable, since the data
formats and locations within the files remain unchanged even as portions of the data itself
are encrypted.

IFS may also be used to transfer partial files in a distributed file system, as suggested by
Muthitacharoenet al. [8]. By integrating IFS into a low-bandwidth distributed file system,
users could gain secure access to their files even from slow clients.

5 Related Work

There have been many file systems and storage systems that provide higher security by
encrypting files and metadata. Reidel,et al. [11] provide a good framework for evaluating
secure file systems; their work discusses file systems and the security that each provides.
Intra-file security is not one of their criteria; although they do discuss the granularity of key
protection, the minimum protection unit is a single file.

Some file systems, such as CFS [1] and Cryptfs [15], require users to manage their own
keys. This approach is simple, but is not suitable for IFS because of the sheer number
of keys required [12]. Other systems such as SNAD [7], SFS and SUNDR [6, 5], and
NASD [3] automatically manage encryption keys, though they do not permit partial-file
encryption. Moreover, many of these systems, including NASD and SFS, store data on
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the disk in an unencrypted form, using encryption only for authentication. The techniques
described in this paper are based on those used in SNAD—it provides strong protection by
encrypting data end-to-end, leaving it in the clear only on the client.

Intra-file security is particularly important for large, distributed file systems such as those
enabled by NASD [3] and object-based storage devices (OBSDs). Reed,et al. provide a
method for strong authentication in such an environment in SCARED [10], providing an
excellent platform for both standard security [7] and the intra-file security proposed in this
paper.

6 Conclusions

Secure file systems and distributed storage networks currently permit encryption only on
a per-file or per-directory basis. However, there are many applications that would benefit
from the ability to encrypt data in smaller pieces, using different keys to permit parts of a
file to be read and written by different groups of users.

This paper presents a solution to this problem, by introducing a concept called intra-file se-
curity, and provides a high-level design for implementing it in a distributed file system and
on individual servers within such a file system. Intra-file security uses additional metadata
to maintain information about secure segments, allowing blocks of a file to be encrypted
and decrypted individually on the client. A key management system provides group man-
agement facilities that are well adapted to the hierarchical nature of access to classified
materials present in organizations requiring security.
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Abstract 
Spatial Data warehouses pose many challenging requirements with respect to the design of the 
data model due to the nature of analytical operations and the nature of the views to be 
maintained by the spatial warehouse. The first challenge is due to the multi-dimensional nature of 
each dimension itself. In a traditional data warehouse the various dimensions contributing to the 
warehouse data are simple in nature, each having different attributes. Data models such as the 
star schema, fact constellation schema, snowflake schema or the multi-dimensional model, can 
therefore, be used to represent the traditional data warehouse.  On the other hand, the different 
dimensions in a spatial data warehouse comprise of different types of data, each of which is 
multi-dimensional in nature. The current available data models are not adequate for such 
domains. In this paper, we propose a data model that is well suited for such domains, called the 
cascaded star model that is capable of representing multiple dimensions of a spatial data 
warehouse, where each dimension is multi-dimensional. The nature of the queries in such 
domains is different from that of traditional data warehouses (such as fly-by of a region), and 
therefore we propose a suitable architecture that allows specification of the queries and their 
visual presentation.   
 
1. Introduction 
In the area of Environmental and Earth sciences, we are concerned with collection, assimilation, 
cataloging and dissemination or retrieval of a vast array of environmental data. Environmental 
and Earth science computer systems receive their input from various types of satellite images 
with different resolutions captured by different sensors, models of the topography and spatial 
attributes of the landscape such as roads, rivers, parcels, schools, zip code areas, city streets 
and administrative boundaries (all exist in topographic maps), census information that describes 
the socio-economic and health characteristics of the population, processed digital terrain models 
into a new information product in the form of three-dimensional visualizations of digital terrain 
models projected as video ``fly-bys'', and finally information transmitted (almost in real-time) 
from ground monitoring stations.  
 
The system needs to provide flexible image extraction functionalities, such as hyper-spectral 
channel extraction, overlaying, and ad-hoc thematic coloring [4]. Such systems are intended to 
serve the evaluation and formulation of environmental policies by enabling users, including 
management and researchers to query various critical parameters such as ambient air and water 
quality and visualize the results in a graphical form. In addition to serving decision makers and 
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researchers, these systems are intended to also serve the citizens, thus, enabling any citizen of 
any given district or a state to look at his/her county, community, home and be able to obtain 
relevant information on such issues as environment, health, and infrastructure, among others. 
Such systems should facilitate effective knowledge discovery in a manner tailored to changing 
needs and abilities of users, both intellectual and technological.  
 
Consider for example the NASA Regional Application Center (RAC) at Rutgers Center for 
Information Management, Integration and Connectivity (CIMIC), which is a joint project 
between Rutgers CIMIC, NASA Goddard Space Flight Center (GSFC) and the New Jersey 
Meadowlands Commission (NJMC). As a RAC, CIMIC maintains a large collection of satellite 
images acquired through various sources. Specifically, the CIMIC-RAC currently stores and 
manages satellite imagery from various sources, including: 
 

?? Direct downloads of AVHRR data from polar orbiting satellites, such as NOAA 
12, NOAA 14 and NOAA 15, over the Northeast region of the US including New 
York and New Jersey; 

?? LANDSAT and RADAR data obtained from NASA archives;  
?? Hyper-spectral images from the Airborne Imaging Spectrometer for Applications 

(AISA) sensor; 
?? Value-added products, such as AVHRR NDVI biweekly composites from the 

NASA EROS data center; Aerial ortho-photographs provided by various private 
companies; and  

?? Value-added products generated by various experts. 
 

In addition to the images from a variety of space borne satellites, other data includes ground 
data from continuous monitoring weather stations, and maps, reports, data sets from federal, 
state and local government agencies. The problem is how to efficiently manage and store this 
diverse type of information and how to effectively serve the diverse set of end users. In 
traditional domains such as banking, insurance, and retail industries data warehousing has been 
successfully implemented to address this problem (inmon96). In such industries, the problem of 
how to design and implement data warehousing has been well researched over the years and is 
well understood. In nontraditional domains such as the Environmental and Earth sciences, the 
problem of applying data warehousing technology is complex and needs further study.  
 
2. Challenges 
Environmental data warehouse is an example of a spatial data warehouse. “Spatial Data 
Warehouse is defined as an integrated, subject-oriented, time-variant, and nonvolatile spatial 
data repository for data analysis and decision making [8].” A data warehouse may use one of 
the data models such as the star schema, fact constellation schema, snowflake schema or the 
multi-dimensional model. For example, in a star schema, the data warehouse contains a central 
table called the fact table, comprising of the keys of each dimension, and a table for each 
dimension. In a spatial data warehouse, the dimensions may include both spatial and non-spatial.   
Spatial Data warehouses pose many challenging requirements with respect to the design of the 
data model due to the nature of analytical operations and the nature of the views to be 
maintained by the spatial warehouse.  
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The first challenge is due to the multi-dimensional nature of each dimension itself. In a traditional 
data warehouse the various dimensions contributing to the warehouse data are simple in nature, 
each having different attributes. On the other hand, the different dimensions in a spatial data 
warehouse comprise of different types of data, each of which is multi-dimensional. The various 
raster images such as satellite downloads, images generated from these satellite images 
describing various parameters including land-use, water, temperature have multiple dimensions 
including the geographic extent and coordinates of the image, the time and date of its capture, 
and resolution. Other such examples include aerial photographs. The regional maps represented 
as vector data also have a temporal dimension as they change over time. The streaming data 
collected from various sensors placed at different geographic locations that sense temperature, 
air quality, atmospheric pressure, water quality, dissolved oxygen, mineral contents, salinity, 
again have both spatial and temporal dimensions. Other dimensions include demographic data, 
census data, traffic patterns, and many such as these.   
 
The second challenge is due to the nature of the queries posed to the scientific warehouses. As 
the queries typically involve accessing multiple dimensions, each of which in itself is multi-
dimensional. We illustrate this with the following examples: 
 
Example 1: A user may want to look at the changes in the vegetation pattern over a certain 
region during the past 10 years, and see their effect on the regional maps over that time period. 
This involves layering the images representing the vegetation patterns with those of the maps 
whose time intervals of validity overlap, and then traverse along this temporal dimension with the 
overlaid image. In the traditional data warehouse sense, this amount to first constructing two 
data cubes along the time dimensions for each of the vegetation images and maps, and then 
fusing these two cubes into one. One may envision fusing of multiple cubes. For example, if the 
user also wants to observe the changes in the surface water, population, etc., due the changes in 
the vegetation pattern over the years, fusion of such multiple cubes is needed.   
 
Example 2: Another user may want to simulate a fly-by over a certain region staring with a 
specific point and elevation, and traverse the region on a specific path with reducing elevation 
levels at a certain speed, and reaching a destination, effectively traversing a 3-dimensional 
trajectory. This query involves retrieving images that span adjacent regions that overlap the 
spatial trajectory, but with increasing resolution levels to simulate the effect of reduced elevation 
level. Another important aspect of serving such queries additionally requires controlling the 
speed at which they are displayed to match the desired velocity of the fly-by.  
 

3. Spatial Database System Architecture  
The ingestion, processing and storing of satellite images in CIMIC is done as shown in Figure 1. 
Images are downloaded from NOAA satellites with the Quorum HRPT antenna and receiver 
systems. Once a day the new raw image files are moved to oversized hard drives on a UNIX 
HP platform. At the same time, a new elements.dat file with ephemeris data is captured through 
the web and placed in the PC running the QTrack ingest software, which assures that images 
ingested later on will have updated orbital elements information and require less navigational 
correction.  
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Figure 1: Preprocessing and Ingesting of Satellite Images 
 
On the HP platform, raw files are fist classified by size. Files less than 20mb are automatically 
eliminated, and the remaining raw files are converted to level-1b by a quick-ingest routine, and 
then compressed. Level-1b files then go through the remap routine where images are clipped to 
a specific area of interest (New Jersey and surroundings) and projected to the Mercator 
projection. The resulting remap files are saved in an internal format (RAT format) and as bitmap 
files. These bitmap files are then classified using normalized regression routine, which employs a 
tool developed by NEC. Specifically, images with high regression coefficient (0.80 or greater) 
are classified as cloud free for the region of interest and flagged as so in the database. The RAT 
format files that emerge from the remap tool are used to create NDVI’s. These NDVI’s 
populate the database and become available to users through the web, and bi-weekly collection 
of NDVI’s are made into a single NDVI images composite and are also available through the 
web.  Due to the limited use of DBMS extenders for handling spatial data, we have 
implemented the database in two separate modules: One the relational DBMS to store metadata 
and thumbnail of images, and another a spatial data/flat file for images. Image files are tied with 
the DBMS by linking the image-id in the database with individual image files. The metadata of 
the images is maintained by an Oracle database through which image thumbnail images can be 
obtained. These images are indexed using an SS-Tree for enhancing the response time for the 
queries and insertions.  
Interfaces are provided to querying the database based on time of capture, particular satellite or 
sensor instrument, type of image such as raw, composites, NDVI, water, temperature, etc. 
Essentially, users are provided with the image-ids, and the actual image is retrieved by clicking 
on the relevant image-id. Currently, it does not provide powerful capabilities to let users 
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perform complex queries for advanced data analysis, such as trend or pattern analysis. In 
addition, no visual display tools are available to allow users to view image pattern changes over 
certain period of the range queries displayed with a speed specified by the users, nor 
capabilities to handle queries that simulate a fly-by over certain region as described in Examples 
1 and 2.    
 
Currently it uses ArcIMS from ESRI to process the image files (in .shp format), including 
layering the images, populating the metadata associated with the images, coloring, and 
composing fly-bys. These are then published on the web so that users can view them, zoom-
in/out, move in different directions (north, south, east, west), or get associated metadata by 
clicking on a specific place. However, this is accomplished manually only for a pre-specified set 
of queries. Our goal is to accommodate ad-hoc queries by employing a data warehouse. As a 
result, for example, the above-mentioned fly-bys can be automatically generated upon users’ 
request.  
 
4. The Spatial Data Warehouse System Architecture  
Our system comprises of a friendly geographic user interface, a powerful query processing 
engine that is capable of supporting various OLAP operations, an output rendering engine, and 
an spatial data warehouse, as shown in figure 2. Our data warehouse is based on the cascaded 
star model, described in section 6.   

 

 

 

 

 

 

Figure 2: System Architecture 
 
The data from different repositories, such as metadata databases, image database, databases of 
real-time streaming data from environmental sensors, etc., are first extracted, validated, 
transformed and then finally integrated, before loading into the warehouse. The data in the 
warehouse is periodically refreshed to reflect updates at the sources and purged from the 
warehouse, perhaps onto slower archival storage [10].  
 
In general, the reason one builds a data warehouse is to construct data in a structured way and 
to allow pre-processing so that users can turn the data into useful knowledge quickly. 
Operational databases maintain state information, while data warehouses typically maintain 
historical information, and as a result, data warehouses tend to be very large and grow over 
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time. Hence, the size of the data warehouse and the complexity of queries can cause queries 
process to take very long to complete, which is unacceptable in most decision support system 
environments. Also, a major performance challenge for implementing query processing and 
output representation is how we construct data warehouse in an efficient way.  
 
4.1 Constructing an Efficient Data Warehouse 
There are many ways to achieve data warehouse performance goals. Query optimizations and 
query evaluation technique can be enhanced to handle aggregations better, or using different 
indexing strategies like bit-mapped indexes and join indexes, etc. We consider implementing our 
GIS warehouse in the following two specific aspects to facilitate construction of the efficient 
data warehouse. 
 
One commonly used technique is to selectively materialize/pre-compute frequently used queries. 
If we can do this pre-computation effectively and efficiently, then we can store many frequently 
accessed historical results in the data warehouse combined with different time periods, different 
resolutions, different aggregations, and different views, etc, at users’ interests. In this way, the 
output processing can be achieved very fast, and sometimes automatically without any more 
computation efforts.  
 
Firstly, let us look at the pre-computation for non-spatial data that are stored in RDBMS and 
are associated with spatial data. Picking the right set of queries to materialize is a nontrivial task. 
For example, we may want to materialize a query that is relatively infrequently used if it helps us 
answer many other queries quickly. We adopt the linear cost model from [8], where the data 
are stored in multi-dimensional data cubes, and each cell of the data cube is a view consisting of 
an aggregation of interest. The values of many of these cells are dependent on the values of 
other cells in the data cube. One common and powerful query optimization technique is to 
materialize some or all of these cells rather than compute them from raw data each time. A 
lattice framework is used to express dependencies among different cells in the total or partial 
order, and a greedy algorithm that works off this lattice determines a good set of cells to 
materialize [9]. We all know that dimensions of a data cube consist of more than one attribute, 
and the dimensions are organized as hierarchies of these attributes. For a simple example, the 
time dimension can be organized into the hierarchy: day, week, month, and year as follows: 

 
      Day 
         
   Week    Month  
 
       Year 
 

None 

 
Figure 3:  Sample Time Hierarchy 

 
In the presence of above hierarchy, the dependency relationship is obviously seen. Consider a 
query that groups on the time dimension only, and we can have the following three queries 
possible: (day), (month), (year), each of which groups at a different granularity of the time 
dimension, also if we have total available for by month, we can use the results to compute the 
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total grouped by year. Generally we selectively materialize the data cube based on query 
dependencies introduced by the conception of hierarchies. 
 
Secondly, it is also essential to pre-process spatial data efficiently, which are more complicated 
than computing non-spatial data. For example, we may pre-process digital maps at different 
resolution levels and store them in the data warehouse, and users can combine them randomly 
to stimulate a fly-by, or pre-overlay the images representing the vegetation patterns with those 
of the maps having the same time intervals of validity, or pre-group a multi-color coded map to 
emphasize a particular category, or pre-interpolate spatial data over a large area which refers to 
the process of deriving elevation data for points where no data samples have been taken, etc. 
There is a big challenge for our project since our pre-processing is based on users’ most 
frequent access interests that have to be updated frequently to meet changes.  
 
Another challenge is that the above partial or total order relationship may not be suitable for 
spatial data dependency. For example, there is no dependency relationship among resolutions, 
and we can’t compute high-level resolution based on low-level resolution or vice versa, or we 
can’t overlay two images based on another overlaid image. Finding a dependency relationship 
among spatial data to avoid processing every raw image from scratch is our next step. 
 
Another technique is to construct our data warehouse model in a different way that is an 
extension of the star schema, in which each dimension itself has a star schema of its own. We 
will explore this in detail in the following section. 
 
4.2 The User Interface, Query Processing and Output Rendering Engines 
A web based high-level user interface to a GIS must provide users with the necessary tools to 
store, retrieve, and analyze data so that they can perform their application-specific functions. 
More importantly, it is used to perform complex data analysis from the data warehouse without 
writing programs and should be comprehensive enough to let users get detailed analysis results 
and knowledge.  
 
Moreover, after the translated SQL queries are processed in the data warehouse, an output will 
present multi-dimensional views of data to various front-end tools through different output 
processing engines. For example, OLAP servers can execute all OLAP operations, such as 
roll-up, drill-down, dicing and slicing, and generate results for data analysis and reporting, 
decision making strategies and advanced data mining.  At the same time, users could require the 
data representation as the generation of a fly-by video with a trajectory, elevation and velocity.  
 
When a spatial database is to be used interactively, graphical presentation of spatial data types 
(SDT) values in query results is essential. It is also important to enter SDT values to be used as 
“constants” in queries via a graphical input interface. The goal of querying is in general to obtain 
a “tailored” picture of the space represented in the database, which means that the information 
to be retrieved is often not the result of a single query but rather a combination of several 
queries. For example, in GIS application, the user may want to see a map built by graphically 
overlaying the results of several queries. Therefore, a user interface for output presentation 
should have at least two sub-windows: (1) a text window for displaying the textual 
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representation of a collection of objects, containing the metadata or alphanumeric attributes of 
each spatial object, (2) a graphical window containing the overlay of the graphical 
representations of spatial data of several object classes or query results, which could be a 
generation of a fly-by video. We will consider implementing our system in this way in the near 
future. 
 
The query engine translates the user inputs as SQL queries that will be inserted into data 
warehouses for further processing. The output representation engine is dealing with data 
representation using existing software such as PIT and IDRISI or newly developed applications. 
This part is mainly complicated by users’ requirements because there are a lot of decision-
support queries that are much more complex than OLTP queries and make heavy use of 
aggregation, and this is basically OLAP operations. Besides this, most users need some specific 
visualization results such as fly-by over a certain region staring with a specific point and 
elevation, and traverse the region on a specific path with reducing elevation levels at a certain 
speed, and reaching a destination, effectively traversing a 3-dimensional trajectory, or a fly-by 
over a certain time period for vegetation pattern change within New Jersey area, which is a 
process of image manipulation and representation.   
 
5. Traditional Data Warehouse Models 
A number of data models have been proposed to conceptually model the multi-dimensional data 
maintained in the warehouse. These include the star schema, the snowflake schema, and the fact 
constellation schema. Since our data model, the cascaded star model, is an extension of the star 
model, in the following, we present these three models with examples, and bring out the 
limitations of these models in representing the   data in our spatial data warehouse. 
 
5.1 The Star Schema 
Perhaps, star schema, first introduced by Ralph Kimball, is the earliest schema used to model 
the data warehouse implemented as a relational databases. In this schema, the data warehouse 
contains a large central table (fact table) containing the bulk of data (dimensions) with no 
redundancy, and a set of smaller attendant tables (dimension tables) with one for each 
dimension. The schema graph resembles a starburst, with the dimension tables displayed in a 
radial pattern around the central fact table, as shown in Figure 4, where A is the fact table, and 
b, c, d, e and f are dimensions and represented by dimensional tables. 
 
                                             b    c           
        
     A 
         d                             e 
                     f                   

          Figure 4: The Star Model 
Note that in the star schema, only one dimension table represents each dimension, and each 
dimension table contains a set of attributes and joins with fact table by common keys when 
implemented as a relational database. Moreover, the attributes within a dimension table may 
form either a hierarchy (total order) or a lattice (partial order). Currently, most traditional data 
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warehouses use a star schema to represent the multi-dimensional data model as it provides 
strong support for OLAP operations. 
 
To illustrate, in the following, we provide an example of the implementation in star schema [8]. 
Suppose the multi-dimensional data for the weather in northeast region in USA consists of four 
dimensions: temperature, precipitation, time, and region_name, and three measures: 
region_map, area, and count, where region_map is a spatial measure which represents a 
collection of spatial pointers pointing to corresponding regions, area is a numerical measure 
which represents the sum of the total areas of the corresponding spatial objects, and count is a 
numerical measure which represents the total number of base regions accumulated in the 
corresponding cell. 
 
The following figure illustrates the implementation for a star model in this case: 
 
 
 
 
 
 
 
 
 
 

Figure 5:  A sample star model 
 
The following tables show some sample data set that maybe collected from a number of 
weather districts tested in northeast of USA. 
 

Region_name Time Temperature Precipitatio
n 

… 

A111 02/23/01 33 1.4 … 

B111 02/24/01 41 1.5 … 

… … … … … 

  

Region_name District  City Region State 

A111 A Flushing 111 NY 

B111 B Edison 111 NJ 

… … … … … 

 

Time Day Month Year Season 

02/23/01 23 February 2001 Winter 

02/24/01 24 February 2001 Winter 

… … … … … 

 
Temperature Range Description 

 33 11 Chilly 

41 12 Mild cold 

… … … 

Region_name 
Time 

Temperature 
Precipitation 

 
Region_map 

Area 
Count 

Region_name 
District  

City 
Region 
State 

Time 
Day 

Month 
Year 

Season 

 

Temperature 
Range 

Description 
 

Precipitation 
Range 

Description 
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Precipitation Range Description 

1.4 21 Middle 

1.5 22 Middle 

… … … 

 
From this sample, we can see that a star model consists of a fact table with multiple dimension 
tables, and the fact table joins the dimension tables with different keys. In this example, all 
attributes in each dimension table are only one-dimensional and can be expressed completely in 
one table. Our question is: if some or all of the attributes in the dimension tables are also multi-
dimensional, i.e., one attribute in one dimension table has multiple attributes associated with it, 
how can we implement it in this model? The answer is impossible.  
 
5.2 The Snowflake Schema 
Snowflake schemas provide a refinement of star schemas where the dimensional hierarchy is 
explicitly represented by normalizing the dimension tables, and therefore further splitting the data 
into additional tables (see Figure 6). Such a table is easy to maintain and saves storage space 
because a large dimension table can become enormous when the dimensional structure is 
included as columns.  
 
 
                                                           c          
                                     b            A    d       
 
            
         e  
  
                    Figure 6: The Snowflake Model 
 
However, only some dimensional tables are normalized and this normalization reduces the 
effectiveness of browsing since more joins will be needed to execute a query. When applied to 
spatial attributes for each dimension table in our case, it is obviously not well suited.  
 
5.3 The Fact Constellation Schema 
Sophisticated applications may require multiple fact tables to share dimension tables. The 
dimensions of this expanded star schema can be normalized into a snowflake schema. These 
multiple fact tables can separate the detail and the aggregated values instead of maintaining a 
single and huge fact table, which may speed the queries processing. See Figure 7 for this 
schema, where fact table A and B share the dimensions h and i. 
 

     h 
         b                                                    e 
                  
                                                                   A            B 
         c                                                f 
         d       g 
                                                                        i 
 
                                   Figure 7: The Fact Constellation Model 
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However, there are some disadvantages of using the fact constellation schema. For example, for 
data warehouse with high cardinality, i.e. high number of hierarchy, numerous fact tables must 
be created, which increase the complexity of the design. Furthermore, for spatial oriented 
attributes for each dimension table, only one dimension table is not enough for holding the 
properties of each attribute. 
 
6. The Cascaded Star Model 
In this section, we present an outline of our spatial data warehouse model, called the cascaded 
star schema, which is an extension of the star schema, where each dimension itself has a star 
schema of its own. There are a number of research studies in the area of spatial data 
warehouses (see the reference list).  The work proposed by Han et al. is closely related to our 
work. Han et al. [8,9] study the problems associated with the design and construction of spatial 
data cubes. It distinguishes the various dimensions in the spatial data warehouse as non-spatial, 
spatial-to-non-spatial, spatial-to-spatial, based on how they transform when that dimension is 
generalized. They provide how the various operations such as roll-up, drill-down, slicing and 
dicing, and pivot can be carried out. While we recognize that each spatial dimension in a data 
warehouse in itself is multi-dimensional and argue that the data warehouse model need to be 
enhanced to handle this. The cascades star schema is shown in Figure 8, where A is the fact 
table, and b, c, d, e and f are dimensions that are also multi-dimensional.  
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 

                 Figure 8: The Cascaded Star Model 
 
The multi-dimensional nature of each dimension is illustrated with an example in figure 9. In here, 
the fact table comprises of the various dimensions of the spatial data, which include land-use, 
temperature, water and vector maps. As can be seen, each of these dimensions in turn is multi-
dimensional, represented as a star. To illustrate, the land-use dimension comprises of a fact 
table of its own with dimensions time, spatial and attributes, where the time dimension is 
comprised of attributes year, date and time of capture of the image; the spatial dimension is 
comprised of the x, y coordinates of the lower left hand and corner and the upper right hand 

A 

f 

d

c 

b 
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corner of the region covered by the image, and the resolution; the attributes dimension is 
comprised of the amount of vegetation, developed, barren, forested upland, etc. in the image. 
Similar to land-use, as can be seen from the figure, themes and water dimensions are also multi-
dimensional in nature.  
 
In the paper, we will present our detailed data model, and introduce the necessary primitives 
that enable the evaluation of different queries. We will also discuss what the different warehouse 
operations such as drill-down, roll-up, mean in the semantic sense in the cascaded star schema, 
and show how they can be carried out. We will present the architecture of our prototype and 
the guidelines for implementation. 
 
 
 
 
 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: A Sample Cascaded Star Model 
 
The following tables show some examples of these dimensions: 
 
Fact table: 

Land_use Temperature Water Vector Map … 
Abc 44 221 111 … 
… … … … … 
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One dimension table: “Vector Map” 
Vector_map Themes Time Spatial Types 
111 New Jersey 01 A  
… … … … … 

 
Another dimension table for an attribute “Time” in “Vector Map”: 

Time Year Date Timestamp 
01 2000 3/23/00 12:00am 
… … … … 

 
In the above example, we can see that a fact table is joined with several dimension tables as in 
the star model, and each attribute in the dimension tables is self multi-dimensional with another 
dimension table joined with it.  In this easy way, we implement a cascaded star model for each 
multi-dimensional attribute in the dimension tables, which explicitly provides support for attribute 
hierarchies. However, the previous star schema cannot accomplish such multi-dimensional 
attribute structures in a single way.   
 
We want to address the difference between a cascaded star model and a snowflake model. 
Someone may get the false impression at first sight that there is no big difference between these 
two models since they both have multiple extensions for some spatial dimensions. However, a 
snowflake model just normalizes some dimensions to reduce a big dimension table for easy 
maintenance and storage saving, whereas a cascaded star model claims each dimension itself is 
multi-dimensional by the nature.    
 
6.1 OLAP Operations on the Cascaded Star Model 
Now let us examine some popular OLAP operations, i.e., roll-up, and drill-down, slicing and 
dicing, and pivoting, and analyze how they are performed in the spatial data cube we 
constructed in a cascaded star model. OLAP are traditional data warehouse operations that 
provide users to view data from different perspectives, hence, OLAP support user-friendly 
environment for data analysis and prepare for advanced data mining process. In the system 
architecture we proposed, it is part of the output rendering engine. 
 
These operations have been discussed intensively in the traditional data warehouse and spatial 
data cube in star model [7]. Our concentration is that how they can be efficiently operated in the 
star cascaded model with selectively materialization, which means aggregating and generalizing 
data from multi-dimensional attribute tables. Consider the example 1 we mentioned above. A 
user may want to look at the changes in the vegetation pattern over a certain region during the 
past 10 years, and see their effect on the regional maps over that time period. This query 
involves two very commonly used querying operations of OLAP: “drill-down” and “roll-up”. 
We constructed the time hierarchy with a partial order in the above and they underlie these two 
operations. Drill-down is the process of viewing data at progressively more detailed levels, for 
example, a user drills down by first looking at the vegetation pattern per year and then 
comparing the vegetation pattern by specific month within different years. Roll-up is just the 
opposite, which is the process of viewing data in progressively less detail. In roll-up, a user 
starts with the vegetation pattern on a given month, then looks at the total pattern in that year, 
and finally, compares the patterns among 10 years. With selective pre-computation of certain 
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data cells in the multi-dimensional data cube, such as vegetation pattern for each month within 
each year, we can easily process this query.    

7. Related Work 
Research in data warehousing is a relatively new area. In the following we review the research 
contributions as well as the prototypes that are most relevant to our work. Han et al. [8,9] 
proposes a spatial data warehouse model in which both spatial and non-spatial dimensions and 
measures exist. It proposes spatial data cube construction based on approximation and selective 
pre-computation spatial OLAP operations, such as merge of a number of spatially connected 
regions. The pre-computation involves spatial region merge, spatial map overlay, spatial join, 
and intersection between lines and regions.  
 
Microsoft TerraServer [2] stores aerial, satellite, and topographic images of the earth in a 
database available via the Internet, where the users are provided intuitive spatial and text 
interfaces to the data. Basically terabytes of “Internet unfriendly” geo-spatial images are 
scrubbed and edited into hundreds of millions of “Internet friendly” image tiles and loaded into a 
data warehouse. The TerraServer adopts a “thin-client and fat-server” model, which consists of 
three tiers: the client tier, the application logic tier, and the database system tier. Users can 
search the data warehouse by coordinates and place names, and can easily view the images 
with different resolutions by simply clicking on it. The application logic responds to the HTTP 
requests and interacts with the back end database to fetch the results. The database is a SQL 
server 7.0 RDBMS containing all images and meta-data of images that are pre-processed and 
stored, for example, all levels of the image pyramid (7 is maximum) are pre-computed and 
stored. However, this system does not provide powerful and comprehensive image pre-
processing tools such as spatial OLAP for advanced spatial data analysis. Moreover, the 
RDBMS integration with image repository has inherent problems, as SQL server 7 stores 
imagery in JPEG or GIF format which does not have much flexibility in handling spatial data.  
 
However, none of the prior researchers recognize that each dimension in a data warehouse in 
itself is multi-dimensional. As a result, much of the work in spatial data warehousing is based on 
the star model. However, this work does not address the issue of the nature of spatial data 
warehouse.  
 
8. Conclusions and Future Research 
In this paper we focused on the problem of applying data warehousing technology in order to 
efficiently manage, store as well as effectively serve users of environmental and earth science 
information centers. An example of such centers is the Regional Application Center, which is 
collaboration between NASA, Rutgers CIMIC and New Jersey Meadowlands Commission 
(NJMC). In this paper, we recognize that environmental data warehouse differs from that of a 
traditional data warehouse in that, each dimension in itself is multi-dimensional in nature. We 
have proposed a new data model, called the cascaded star model to accommodate this. In this 
paper, we have provided a limited treatment to the OLAP operations. Our future work includes 
formalizing the necessary primitives that enable the specification and execution of queries, and 
the semantics of various warehouse operations including, drill-down and roll-up and the 
evaluation of these operations.  
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Abstract

We present here a new way of indexing and retrieving data in huge datasets having a high
dimensionality. The proposed method speeds up the selecting process by replacing scans
of the whole data by scans of matching data. It makes use of two levels of catalogs that
allow efficient data preselections. First level catalogs only contain a small subset of the
data items selected according to given criteria. The first level catalogs allow to carry out
queries and to preselect items. Then, a refined query can be carried out on the preselected
data items within the full dataset. A second level catalog maintains the list of existing first
level catalogs and the type and kind of data items they are storing.

We established a mathematical model of our indexing technique and show that it consider-
ably speeds up the access to LHCb experiment event data at CERN (European Laboratory
for Particle Physics).

1 Introduction

Indexing and data selection in a huge data set having a high index dimensionality is one of
the key issue in the domain of data management. Recent papers on the subject address this
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problem in specific cases such as spatial databases [6, 5, 7], similarity searches [5, 1, 8]
or string matching [4] but do not offer global solutions. Moreover, existing methods are
outperformed on average by a simple sequential scan when the number of dimensions is
larger than approximately ten[13].

On the other hand, the variety of useful selection criteria on a given set of data is far from
being infinite. They can usually be reduced to a small number of indexes, say 20 to 30
maximum (which is already a very high dimension). Thus, from all values contained in
a data item (tens of thousands in some cases), only this very reduced subset of 20 to 30
values is relevant for the selection criteria.

This property is used to define a new indexing method based on two levels of catalogs. This
method greatly speeds up the linear selecting process by replacing scans of the whole data
by scans of matching data. Data is efficiently selected using both server side and client side
preselections and the power of the SQL language.

Section 2 presents the context of this work, i.e. the LHCb experiment at CERN and its
requirements in terms of data indexing and retrieval. Section 3 presents search results in the
domain of data indexing and emphasizes their respective strengths and weaknesses. Section
4 presents the proposed indexing schema and shows how it can be used efficiently for data
retrieval. Section 5 evaluates the performance of the new indexing method compared to
sequential scan1. Section 6 draws the conclusions.

2 Context

The work presented here is based on studies made at CERN (European Laboratory for
Particle Physics) in the context of the LHCb [10] experiment. We present here briefly the
problem and the requirements we had.

2.1 The LHCb experiment

LHCb [10] is the name of one of the future Large Hadron Collider (LHC) experiments. Its
primary goal is the study of the so called CP Violation [11]. This physical theory suggests
that, in the world of subatomic particles, the image of a particle in a mirror does not behave
like the particle itself [9]. One of the fundamental grounds of this effect is the existence of
the bottom-quark and its cousin the top-quark. This is precisely this bottom-quark, under
the form of the B-meson that the LHCb experiment intends to study. The only way to pro-
duce particles like this meson is to collide other high energy particles (accelerated protons
in the case of LHC). This collision will produce hundreds of new particles among which
the physicists will try to detect B-mesons and to measure their parameters and behavior
(especially the way they decay).

1Sequential scan is besides our method the only method which, to our knowledge, fulfills our requirements
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2.2 Some figures

LHC will let bunches of protons collide every 25 ns, i.e. at a frequency of 40 MHz. Such
a collision is called an event and creates lots of particles (some hundreds). The different
detectors constituting LHCb are able to detect all created particles and to specify their
energy and momentum. The global output is about 1 MB of data per event across 950000
channels. This yields 40 TB of data every second !

Most of this data will not be stored since more than 99,9999% of it is not interesting.
Actually, the detector has a four level trigger system that allows a reduction of the data rate
from 40 TB/s to 20 MB/s per second, which is two million times less. This factor is due
to both a reduction of the event size to the order of 100 KB and to a reduction of the event
rate to 200 Hz. Assuming that the LHC will run 24 hours a day and 7 days a week, LHCb
will produce an order of 1010 events per year, which is one petabyte (1 PB = 1015 bytes) in
term of data size.

Table 1 summarizes the figures concerning the data being saved, indexed and later retrieved
by physicists for analysis.

Size of a data item 100 to 200 KB

Nb of items 109 to 1010 per year

Global size of the database� 1015 bytes = 1 PB per year

Data items input rate 200 Hz

Data input rate 20 to 40 MB/s

Table 1: Figures concerning LHCb data

2.3 Data selections

The analysis by physicists of the LHCb data is rather specific. It is mainly based on an
iterative process consisting in selecting some data items (typically in the order of 106) with
rather complicated selection criteria, downloading the items, running some computation on
them and modifying the selection criteria. A criterion may for example make use of the
energy of the event, of the types of particles involved or of the number of decays. The
number of iterations is rather small (in the order of 10) but the selection of the data still
appears to be the key of the physics analysis.

Another issue is the number of indexes that a given criterion uses. This is typically in the
range of 10 to 30 parameters with a mixture of numeric, boolean and strings. These indexes
are not always the same for all criteria but a few number of criterion types can be defined
(less than 10) for which the set of parameters is fixed. Due to the high dimensionality of
the event data (10 to 30 indexes), up to now, at CERN, the only data selection algorithm
was a linear scan of the whole dataset.
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3 Related Work

There are not many research approaches addressing the issue of indexing generic data in a
high dimension space. Weber et al [13] show that there exists a dimension over which any
algorithm is outperformed by a sequential scan. Experimentations show that the sequential
scan outperforms the best known algorithms such as X-trees[2] and SR-Trees[5] for even a
moderate dimensionality (i.e.� 10).

These two algorithms are based on data partitioning methods. The ancestor of the data
partitioning method is the R-tree method [3] which was further developed under the form of
R�-Trees [6]. However, these data partitioning methods perform poorly as dimensionality
increases due to large overlaps in the partitions they define. This is due to exponential
increase of the volume of a partition when the number of dimensions grows.

The SR-Tree method tries to overcome this problem by defining a new partition schema,
where regions are defined as an intersection of a sphere and a rectangle. The X-Tree
method, on the other side tries to introduce a new organization of the partition tree which
uses a split-algorithm minimizing overlaps. The results are good at low and moderate di-
mensions but are outperformed by a sequential scan for dimensions larger than 10.

4 A two level indexing schema

The aim of our proposed schema is to allow most of the selection to be carried out using
catalogs (tag collections) that contain only a part of the data items and, for each item, only
a subset of its values (a tag). Several catalogs are built, each for a different type of query.
This allows to perform a very efficient preselection of the items before accessing the real
data items.

4.1 Tags

A tag is a subset of a data item comprising several parameters plus a pointer on this data
item. A pointer is simply the information needed to find and retrieve the data item, be it a
regular pointer (memory address), a file name, an URL or something else.

A tag contains the few values (also called parameters) of the data item that are used as
selection criteria. For a given criterion, or even a given type of criterion, the number of tag
values is small (10 to 30) which results in a tag size of 10 to 200 bytes. For example, in the
case of some physics events, one may want to include in the tag the energy, the nature of
the event and the number of particles involved.

Several types of tags can be defined, with different sizes and contents, even for the same
data item. Different tags will point to different subsets of the data items and correspond to
different criteria.

Tags are small, well structured objects that can be easily stored in a relational database.
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Thus, they can be searched using the power of SQL-like languages. The storage of tags in
a relational database is trivial : each type of tag is stored in a different table, whose columns
are the different values included in the tag plus one for the pointer to the real data item. The
data item itself does not need to be part of a database.

Tags will be used to make preselections without loading the data items, which reduces the
amount of loaded data by a factor of 103 in the case of LHCb.

item 202

...

item n2

item 201 ptr ...y1 yp

...

Tag typesTag Collection "TCn"

Tag Collection "TC1"
Data items

Data items

item 101

item 102

...

item n1

ptr ...x1 xn

TCn

TC1

locationname type ...

type1

typek

x1, ..., xn

y1, ..., yp

name description

...

...

...

List of Tag Collections

Figure 1: Structure of the tag collections

4.2 Tag collections

As explained above, tags are subsets of data items. A tag collection is a set of tags, all of
the same type. It corresponds to a set of data items but with only a subset of the data items
values. The values themselves fulfill some criteria, such as being in the interval between a
minimal and a maximal value. Thus, two different tag collections may correspond to two
different subsets of data items, even if they use the same set of values (type of tags). These
subsets may of course overlap.

Tag collections are stored in a relational database as a table, where each line is a tag and
columns correspond to the values contained in the tags (Fig. 1). The tag collections form a
list of tag collections, each with each associated tag type.

Since tag collections only contain tags for a given subset of the data items, they act as a
first preselection on data. For example, in the LHCb experiment, a collection of tags is in
the order of 105 smaller than the database, i.e. around 10 GB. A factor 103 is due to the
tag size (section 4.1) and another 102 factor comes from the fact that, on average, less than
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1% of the data items have a tag in a given collection, i.e. tags whose values are within the
predefined ranges associated to that collection. Thus, a collection has typically 107 to 108

entries.

Collections can be defined by any user or group of users who wants to be able to use a
new selection criterion. The creation of a new collection may either require a scan of the
full set of data items or is extracted as a subset from another collection. Scanning the full
set of data items is time consuming but will be far less frequent than the selection of data
items. We expect that there will only be 10 to 20 “base” tag collections in LHCb. All other
collections will be subsets of base tag collections.

4.3 Selection process

By selecting tags in tag collections instead of selecting directly data items, there is an
immediate gain. Only data items of interest are loaded instead of loading all items for each
selection.

This is specially interesting in the case that data items are not located in a database but in
regular files and loading a data item requires accessing a file containing many items. With
a pointer to the data item within the file, the item of interest is directly accessed and loaded.
Such a strategy of storing the actual data in regular files may actually be applied to many
problems since database management systems cannot handle petabytes of data easily.
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Data Server

Tag Server
1
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tags

> 1 PB

10−100 GB
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Figure 2: Data selection process

Furthermore, the 2-level indexing schema presented here offers a very powerful and flexible
way of applying various preselections allowing to reduce both the amount of accessed data
and the network traffic. The complete selection process is shown in Figure 2.

The steps involved in the selection process are the following :

1. The client selects a tag collection and sends a SQL query to be applied on tags from

186



this collection. The usage of a specific collection is actually a first preselection made
by the physicist.

2. The query is processed on the server side.
3. Only matching tags are sent back. This minimizes the network load.
4. A second selection may be applied on the client side, for example for queries that

cannot be formulated in SQL and which require a procedural language such asC++.
5. Once the selection on tags is complete, requests for the corresponding data items are

sent to the data server.
6. Data items are retrieved (from files, in the LHCb experiment).
7. Retrieved data items are sent to the client.
8. A last selection may be performed on the full data items, in the case that some in-

formation was missing in the tags which did not allow to perform this more narrow
selection in a previous step.

Note that the separation between client and servers (a tag server and a data item server) on
Figure 2 allows for example to replicate the tag server while keeping the data item server
at a single location .

5 Performance evaluation

Let us evaluate the performance of our indexing schema. It is hard to compare our proposed
schema to existing indexing techniques since we don’t know of other indexing techniques
except linear scanning which are able to meet our requirements.

Two of the main high-dimensionality indexing schemas are X-trees[2] and VA-file[12].
The X-Tree method is outperformed by a sequential scan for a dimension exceeding 6 (see
[13]) and VA-files are only applicable to similarity-search queries. Thus, we only compare
our performances with the performances of the sequential scan method.

5.1 Some approximations

Let us make some simplifications and approximations in order to create a model of the
proposed indexing schema.

Type of data : We only consider one data type (integers). The cost of a comparison
between two values is therefore always the same. This is not the case in real life, where
data typically consist of numbers, booleans and strings. However, it is always possible to
express the comparison cost of a data item type as a factor of a single integer comparison.

Optimizations : No optimization of the query processing on tag collections are taken
into account. This means that tag collections are searched sequentially. Thus, the gain
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obtained by querying tag collections is really the minimum we can expect from the new
schema.

Data transfers : No optimization of data transfers are taken into account. Especially, we
do not consider pipelined schema where the data transfer of a given item could be realized
during the computation of the previous one.

Size of tag collections : For the performance analysis we consider only a single tag col-
lection with a fixed number of tags. The number of tags and the size of the tags may be
considered as an average among the different values of a real life example.

Complex queries : We do not take into account complex queries that could only be
processed by a dedicated program. In other words, step 4 of the selection process (Figure
2) does not occur here.

5.2 Theoretical model

Let us adopt the following notations :

N is the number of items in the whole database;
n is the average number of items in a given tag collection;
D is the number of values in a data item i.e. its dimension;
d is the number of values in a tag i.e. the dimension of the tag; we assume that all these

values are tested;
d0 is the number of values that are not contained in the tag but still need to be tested

(step 8 in Figure 2);
Tlat is the latency of the network which is used to transfer the data;
Ttr is the time used to transfer one value through the network; in second per value;

TIO is the time needed to load one value from disk into the memory;
TCPU is the time to compute one value, i.e. to compare it with another value;

q is the number of matching tags for the query we are dealing with;
tseq is the duration of the query using a sequential scan;
ttag is the duration of the query using the new indexing schema.

In the case of a sequential scan, the time needed to process a query is simply the time
needed for querying one data item multiplied byN. Each data item is read from disk,
transfered through the network and processed.

tseq= N (Tlat +D (Ttr +TIO)+(d+d0)TCPU)

It is independent of the size of the result.
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The time needed to process a query using the new indexing schema is slightly more com-
plicated to compute. Using the architecture depicted in Figure 2, we can divide it into two
parts : the durationt1 of the query on tags and the durationt2 of the query on data items.
The query on tags is carried out on the server. Matching tags are transfered to the client.
The query on data items is similar to the sequential scan method.

ttag= t1+ t2

t1 = n(d TIO+d TCPU)+q(Tlat +d Ttr)

t2 = q(Tlat +D (TIO+Ttr)+d0 TCPU)

Finally :
tseq= N Tlat +N D(TIO+Ttr)+N (d+d0)TCPU (1)

ttag= 2q Tlat +(n d+q D)TIO+q(d+D)Ttr +(n d+q d0)TCPU (2)

The query duration is dependent on the numberq of matching tags. Note that the assump-
tion that tags are transfered one by one to the client corresponds to the worst case. This
could be improved by sending tags by groups.

5.3 Interpretation

The terms in equations (1) and (2) can be divided into three parts : processing time (TCPU),
network transfer time (Tlat andTtr ) and data retrieval time (TIO). Let us consider them
separately here.

Processing time : the processing time ratio between tag collection access and the default
sequential scan is :

rCPU =
n d+q d0

N (d+d0)
= α

d+ γd0

d+d0
(3)

where α =
n
N

γ =
q
n

Sinceγ� 1 (comes fromq� n), we can be sure thatrCPU � α. This demonstrates that the
CPU time ratio is less than (but of the order of) the ratio between the number of tags in a
collection and the number of data items.

Network transfer time : the network transfer time ratio between tag collection access
and the default sequential scan is :

rNET =
2q Tlat +q(d+D)Ttr

N Tlat +N D Ttr

=
q
N

2Tlat +(d+D)Ttr

Tlat +D Ttr
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Sinced� D, we finally have :

rNET � 2
q
N

rNET � 2 α γ (4)

where α =
n
N

γ =
q
n

Sinceγ� 1, the network transfer ratio is at least of the order of the ratio between the number
of tags in a collection and the number of data items. In practice, we even haveγ� 1 (we
foreseeγ� 10�2 for LHCb) and thusridle� α.

Data retrieval time : the data retrieval time ratio between tag collection access and the
default sequential scan is :

rDR=
n d+q D

N D
= α (β+ γ) (5)

where α =
n
N

β =
d
D

and γ =
q
n

Usually,β� 1 andγ� 1. ThusrDR� α. This means that, in respect to data retrieval time,
we gain far more than just the gain obtained by the preselection on data items.

Let us estimateγ. By definition, γ is the proportion of matching tags in a tag collection
for a given query. Let us consider a very simple case where every part of the query is a
comparison and is fulfilled by half of the items. In addition, let us suppose that the data is
uniformly distributed. This leads to :

γ =
1
2d and

rDR

α
=

d
D
+

1
2d

Figure 3 gives the behavior of this ratio against the dimensiond for different values of D.

Roughly, rDR
α goes down from 1 to a minimum for dimensions between 0 anddm� 8 and

linearly goes up afterwards until it reaches 1 again for dimensionD. Clearly, we can
approximaterDR by α d

D if d � dm. This is exactly our goal since the data retrieval time
becomes proportional to the loading time of the tags.

For the LHCb experiment, the dimension of a data item isD � 20000. The minimum I/O
time is reached ford� 18 andrDR<

α
1000.

6 Conclusions

We presented a new way of indexing and selecting data in huge datasets having a high index
dimensionality. The method avoids linear scanning of the whole data set. Only a minimal
set of data is scanned, namely the values stored in tag collections. The selected tags point
to the data items that are then retrieved for applying a more narrow selection.
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Figure 3: Evolution of a majoration of the data retrieval ratio divided byα in function of
the dimension of the tag

By scanning tags in tag collections instead of a flat scan of all data items, the minimal gain
is proportional to the ratio between the number of data items and the number of tags within
the selected tag collections. In many cases, the effective gain is the minimal gain multiplied
by the ratio of the dimension of data items and the dimension of tags.

The proposed data items selection and retrieval schema was implemented at CERN, in the
context of the LHCb experiment and seems very promising. No enhancements have been
tested at this time but an implementation of a computer assisted parallelization is planned.
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1 Abstract

In this paper we address the important problem of data placement in tertiary storage taking
object relationships into account. This work is in contrast to earlier schemes that either
focus on specific data types or assume that data objects are accessed independently. Five
new data placement schemes are developed. The effectiveness of these schemes is shown
through simulation. The proposed schemes, in particular the Edge Merge scheme, give
superior performance over schemes optimized for independent access.

We also show that our schemes can easily adapt to variations in the access pattern.
This also allows the schemes to be employed when no prior information about the access
pattern is available. Interestingly, our results show that the probabilities of object access
do not have a big impact on performance. On the other hand, changes to the clustering of
nodes have a significant effect. This result underscores the importance of the relationships
between objects for placement of data. The use of controlled replication for “free” is also
developed and shown to be effective in further improving performance. The study also
evaluates the impact of a secondary disk layer and prefetching.

2 Introduction

The tertiary storage layer in a hierarchical storage system is characterized by very large
data volume and very high random access latency. Both attributes are directly related to
the use of numerous cheap removable media sharing a small number of expensive drives
and robot mechanisms. The high access latency is typically dominated by media switch
time (for certain tape systems, however, the seek time may exceed the media switch time).
With ever increasing demands for storing very large volumes of data for applications such
as telemedicine, online multimedia document systems, and other large multimedia repos-
itories, large amounts of live data are being stored on tertiary storage systems. Random
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accesses to data stored on tertiary storage can suffer unacceptable delays as media are
swapped on drives. The need for swapping media is dictated by the placement of data.
Judicious placement of data on tertiary storage media is therefore critical, and can signifi-
cantly affect the overall performance of the storage system.

The placement of data for specific domains such as multi-dimensional arrays [1], re-
lational databases [15], and satellite images [21] has been addressed earlier. Research on
tertiary storage placement in a more general setting has been addressed under the assump-
tion that the data objects are accessed independently [2]. This assumption is rarely valid in
practice – data objects typically are related and this is reflected in the access of the data.
For example, online manuals contain hyperlinks to related sections and other manuals, a
browsing session in a multimedia repository is typically guided by similarity between ob-
jects, and various test results of a given patient are likely to be accessed during diagnosis
or treatment. In this paper we address the problem of placement of data on tertiary storage
in a general setting without the assumption of independent access. Our approach is to ex-
ploit the nature of the access to the data to determine an optimal placement. This work is
orthogonal to related issues of data migration and scheduling. The problem of placement
of data on tertiary storage can be broken down into two sub-problems due to the significant
cost of switching media: i) allocation of data to media; and ii) placement of data within the
assigned medium. The problem of placing data within media has received some attention
and we employ existing solutions to this problem such as [2]. The focus of our study is on
the sub-problem of allocating data to media in order to minimize switching.

We propose and evaluate several placement schemes for tertiary storage systems based
upon data access patterns. The schemes can be employed even if the access pattern is
not known a priori, and can dynamically adapt to changes in access patterns. The study
considers the impact of the secondary storage buffer and caching policy on the placement,
and effective use of prefetching based upon the placement and access pattern. In an earlier
study we demonstrated that for the case of multimedia documents replication of objects
is an effective technique for reducing switching and improving performance. We study
the use of replication of objects on multiple media for the general case in this study. The
effectiveness of the proposed schemes is evaluated using a detailed hierarchical storage
simulator. Our results show that significant improvements (as much as 80% reduction in
average waiting time) can be achieved with our placement schemes. The remainder of the
paper discusses the issues involved, our proposed approaches, and sample experimental
results. Further details and results will be given in the full version of the paper.

3 Related Work

The placement of data for specific domains such as multi-dimensional arrays [1], relational
databases [15], and satellite images [21] has been addressed earlier. Research on tertiary
storage placement in a more general setting has been addressed under the assumption that
the data objects are accessed independently. Placement schemes based upon independent
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document access probabilities and no replication have been proposed in [2, 18]. Optimal
arrangement of cartridges and file-partitioning schemes for carousel-type systems are in-
vestigated in [17]. Placement schemes for data on optical disks are developed in [3]. To
the best of our knowledge, our work is the first to address the issues of placement of related
objects (in a general setting) and replication.

Other researchers have addressed the use of hierarchical storage systems for multimedia
data. A cache replacement technique for managing secondary storage buffers when multi-
media objects are stored on tertiary storage has been developed by Ghandeharizadeh et al
[6]. The use of a pipelining mechanism that avoids the need for complete materialization
of an object on disk before initializing playback is presented in [5]. We have developed a
prefix-caching scheme with low jitter and startup latency for storing continuous media data
[14]. Storing video on hierarchical storage has also been studied in [20, 19]. The study
addresses I/O bandwidth issues at the various levels of the storage hierarchy. Scheduling
schemes for tertiary storage libraries are discussed in [4, 13, 8, 11] – any of these tech-
niques can be applied in conjunction with our research to further improve performance. In
[10] a prefetching algorithm based upon Markov-chain prediction of access is developed.
Models of tape systems and tertiary storage system parameters can be found in [7, 9].

4 Data Placement Schemes

In this section we first explain the nature of access for related objects. This is followed
by a description of the proposed tertiary placement schemes that take into account the
relationships between objects. Then we discuss the issues of adaptive placement, impact of
secondary storage, replication and prefetching.

4.1 Access Pattern for Related Objects

For efficient storage and retrieval of data it is critical to take into account the data access
pattern. Data objects can be accessed either directly, or through a link from another object.
Independent, or direct access to an object can be captured simply by the probability of ac-
cess. In addition to direct access to objects, users may access objects based upon links from
other objects (e.g HTML pages with links to other pages, or hyperlinks between manual
pages). Such access is also very common in a browsing scenario whereby users simply fol-
low links of interest. A user would typically begin by accessing an object and then possibly
following some number of interesting links. If none of the links are interesting, the user
may directly access some other object.

A Browsing Graph (BG) can be used to capture such access patterns. The browsing
graph consists of labeled nodes and labeled edges. Each node represents an object and
the label of the node gives the probability that the node will be accessed independently of
the previous visited node. A directed edge between two nodes represents a link from one
object to the other and the edge label gives the probability that the edge would be followed.
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The sum of the probability of all edges going out of an object is not necessarily 1.0, since
it is possible that none of the edges will be followed. We use the term birth probability to
represent the probability of independent access to objects and death probability to represent
the probability that once the node is accessed, none of its edges will be followed. The death
probability of a node is simply 1 - (sum of outgoing edge probabilities).

4.2 Data Placement Schemes

Tertiary storage suffer from high access latency. The access cost in tertiary storage is
dominated by the media exchange operation and head position delay. The goal of data
placement is to minimize the expected access cost and reduce latency. In [2] it is shown
that a placement whereby the objects are placed sequentially in decreasing order of their
access probabilities is optimal. We call this the Birth Probability Scheme. This result,
however, is based upon the assumption that the objects are accessed independently.

Static Probability Scheme: The frequency of an object being accessed is usually dif-
ferent from its birth probability. The object birth probability is the probability of the object
being accessed directly, while the static probability is the probability of being accessed di-
rectly or indirectly. In other words, static probability represents the frequency of the object
being requested. Given the user browsing graph, the static probability of an object can be
easily computed by simulation. Our static probability data placement scheme is that the
objects are placed sequentially in decreasing order of their static probabilities.

Edge Merge Scheme: This scheme explicitly takes into account the links between ob-
jects. Once an object is requested, it is very likely that objects with high probability links
from this object will be accessed next. If such neighbors are placed on the same medium,
a medium exchange can be avoided. The main idea of this scheme is therefore to place
strongly related objects on the same medium. Ideally, all related objects are placed on the
same medium. However, the medium capacity will not allow this. Therefore related objects
may have to be spread across multiple media if the “cluster” of related objects is large. On
the other hand, if there are small “clusters” then the problem is to pack as many clusters as
possible on a single medium.

The basic idea behind edge merge is the following: Not all linked objects can be placed
together; therefore, we give priority to higher probability links. To achieve this, we start
merging objects that are linked by high probability edges into a new object. We define the
new object’s birth probability to be equal to the sum of that of the merged objects. Links
into and out of the merged objects connect to the new object. Objects are merged in de-
creasing order of the link probabilities. Merging is not done if the the cumulative size of the
resultant object will be larger than the medium capacity. When no further objects can be
merged, the cumulative objects are allocated to media. This allocation follows the optimal
scheme of [2] in decreasing order of the cumulative static probability.

Note that when two objects are merged, the cumulative birth probability is simply the
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sum of the birth probabilities of the objects. Similarly, the probability for incoming edges
from the same object are merged. For outgoing edges, a weighted sum of the probabilities
is used if both merging objects have edges to the same object. The summing is done ac-
cording to the static probability of the merging objects. The resulting static probability of
the merged objects are computed in a manner similar to that explained earlier for the Static
Probability scheme.

Hot Edge Merge Scheme: This scheme is very similar to the Edge Merge scheme. The
only difference is that only edges that have a probability greater than a preset value (i.e. the
“hot” edges) are merged. The idea is that this scheme will result in media with very high
probability of access which will remain loaded most of the time.

Birth Hop Scheme: This scheme presents an alternative technique for combining
direct and indirect access patterns. As in the hot edge merge scheme, we hope to use
both object access probability and browsing graph information. The birth hop scheme
works as follows. We begin by assigning the object with the highest birth probability to a
blank medium. Following this step, we place as many objects as possible onto the same
medium in decreasing order of either edge probability (from objects already allocated to
the medium) or birth probability. Once the medium is full, we assign the object, from those
that are unallocated, with the highest birth probability to a new medium and repeat the pro-
cess. This operation is repeated until all objects are allocated.

Static Hop Scheme: This scheme is similar to birth hop scheme, except static prob-
ability instead of birth probability. The idea of this scheme is to allocate an object to a
medium, we can either choose an object with highest static probability, or we can choose
an object that has high probability edges with objects already on that medium.

4.3 Adaptive Placement

A key component of the proposed data placement schemes is knowledge of the access
pattern. Although it is useful to know this a priori, it is not critical to the success of the
proposed approach. Such information can easily be gathered from the system by keeping
track of object requests. Based upon the observed access pattern, the data placement on
tertiary storage can be tuned. In Section 5 we show the effectiveness of this adaptive
placement in response to changes in the access pattern. In the complete absence of access
information, the placement can begin with an initial guess for the access patterns followed
by progressive refinement as user requests are serviced and the actual pattern is discovered.

4.4 Impact of Secondary Storage

In hierarchical storage systems, the secondary storage disks typically serve as a cache for
data on tertiary storage. Depending upon the size of the disk layer and the caching (or
migration) policy, some of the requests for objects are serviced directly from disk without
impacting tertiary storage. The effect of the disk cache can be translated into a change in
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the effective access pattern observed at the tertiary level. An adaptive strategy for tertiary
storage can exploit this change in access pattern to generate a placement better suited for
the available secondary storage cache.

4.5 Replication

Data objects that have strong links to objects in different media are likely to cause excessive
swapping of media. While such situations will hopefully not arise often, it is possible that
an object may have strong links to objects in different clusters. These two clusters may
be placed on separate media due to their size. To overcome this, we propose to selectively
replicate objects on multiple media based upon their edge probabilities to objects in various
media. Furthermore, for schemes that place related collections of objects, it is possible that
there are segments of media that not filled - these can be used to replicate objects for “free”
since the extra space is not large enough for a cluster and would otherwise be empty.

4.6 Prefetching

Schemes that place collections of related objects together aim to avoid swapping of media
for a sequence of requests from a user. It is possible, however, that in order to service
the requests of other users, the media may be swapped. This could result in thrashing
between the users and expensive swapping. To avoid this situation we investigate the use of
prefetching of related objects from a medium before ejecting a loaded medium. Prefetching
further delays pending requests and also uses up disk space. It is therefore important to
make a good judgment about when and how much to prefetch.

5 Experimental Results

In this section we demonstrate the effectiveness of our new data placement schemes to-
wards reducing average response time. The results are based upon a detailed CSIM [16]
simulation model of the system. The tape library is modeled on the Ampex DST tape li-
brary configured with Ampex DST 310 drives [9]. Further details of the tape simulator can
be found in [12]. The Secondary storage is configured with four 5GB disks, totaling 20
GB of disk storage. The tertiary storage component is modeled on a robotic tape library
with four Ampex DST drives. Some of the important parameters for the tape simulation are
provided in Table 1. The experiments were conducted on a synthetic collection of 10,000
objects of size 100 Megabytes each. The tape library is configured with 2000 tapes each of
size 2GB, giving a total of 4TB of tertiary storage.

The set of objects and the access pattern is generated as follows. The birth probability of
objects follows a Zipf distribution. In order to capture the effects of links between objects,
we introduce the notion of edges between objects. To determine the edges, the objects are
divided into clusters. The number of objects in a cluster is uniformly distributed between
5 and 20. Some (5%) of the objects are considered to be outliers that do not belong to any
cluster. For each object, a death probability, ��, is picked uniformly distributed between
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Parameter Value(s) Meaning

TAPE SIMULATION PARAMETERS
RWD OVHD 0.0006 seconds Rewind Overhead
SEEK OVHD 0.0006 seconds Seconds
SEEK SPEED 110 MB/s Tape seek rate
EJECT TIME 4 seconds Time to eject a tape
LOAD TIME 10.1 seconds Time to load a tape on a drive
PICK TIME 3.7 second Time for robot to grab a tape
PUT TIME 1 second Time for robot to drop a tape

MOVE TIME 1.9 second Time for robot to move
XFER SPEED 14.2 MB/s Tape transfer speed
NUM TAPES 2000 Total number of tapes
TAPE CAP 2 GB Tape cartridge capacity

NUM DRIVES 4 Number of Drives
DISK SIMULATION PARAMETERS

ROT SPEED 4002 Rotational speed RPM
SEC TR 72 No. of sectors per track

CYLINDERS 1962 No. of cylinders
TR CYL 19 No. of tracks per cylinder

TRKSKEW 8 Track skew in sectors
CYSKEW 18 Cylinder skew in sectors

CNTRL TIME 1.2 Controller overhead (ms)
CAPACITY 5 GB Disk storage capacity

Table 1: Table of Parameters

0.05 and 0.2. This is the probability that the user does not follow any of the links from this
object. Edges to other objects within the cluster are created and assigned probabilities that
are uniformly distributed so as to add to 1 - ��.

It is important to note that although the access pattern is an input to the placement al-
gorithm, it is not crucial that this pattern be accurate. As mentioned earlier, if the access
pattern is unknown or changes after the placement, the system can adapt by reorganizing
the data according to the new observed access pattern. Experimental evidence to support
this claim is presented in Subsection 5.2.

In each experiment, we run a stream of requests. The stream begin by requesting a
starting object identified using the birth probability for that object. As soon as this object
is retrieved, the user chooses to either follow one of the edges from this object, or to pick
another object independently. This choice is based upon the edge probabilities and the
death probability of the currently accessed object. In each test, we run 1000 requests based
upon which we compute the average response time.
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Figure 1: Average Response Time for Different Data Placement Schemes

5.1 Different Data Placement Schemes and Performance

We begin by studying the relative behavior of the different schemes in reducing average re-
sponse time. Figure 1 shows the average response time by different schemes. The number
of drives was varied from 1 to 4. As can be seen from the graph, the ���� ����� scheme
gives the best performance, and the ���	
 scheme has the worst performance. The �	�	�
scheme has less average response time than ���	
 scheme. The Edge Merge scheme re-
duces the average access time by 77% compared to the Static scheme for a single drive. We
can also observe that as the number of drives increases, the average response time reduces
for all schemes. The superior performance of Edge Merge was observed in all our experi-
ments. The scheme that does not consider the relationships between objects (Birth) has the
poorest performance. Similarly, the Static scheme has poor performance since it does not
use the link information effectively.

5.2 Adapting to Variations in Access Pattern

In the preceding experiment it was assumed that the access pattern is known a priori. This
information is used to generate the placements. If the access pattern is unknown or changes
after the placement, the placement may be less beneficial. The actual access pattern can
easily be discovered by recording the requests for objects. Based upon this input, a more
effective placement can be achieved. Note that through observation, it is not possible to
distinguish between direct and indirect access to an object. When object � is requested fol-
lowing a request for object �, it is not clear whether or not � was accessed due to a link from
� to �. Consequently, the schemes based upon birth probability would not be applicable.
We now investigate the impact of these variations.

In Figures 2 (a) and (b) we study the impact of random changes in the object access
probabilities and the edge probabilities respectively. In each experiment the placement is
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Figure 2: Impact of Changes in (a) Edge; and (b) Node probabilities

generated based upon an initial access pattern. Next, a random subset of 10% of the nodes
(edges) are chosen and their probabilities are altered to varying degrees. The performance
is tested using this altered access pattern. The frequency of access to documents based upon
this altered graph is captured and a new placement is made based only upon these observed
frequencies (with no other knowledge of the changed access pattern). Using this adapted
placement, the performance is again measured. This is repeated for varying degrees of
changes from the original access pattern. From the graphs we observe that changes in edge
and node probabilities have very little impact on the data placement schemes. These ex-
periments show the impact of changes in the distribution of the node and edge probabilities
while keeping the structure of the access pattern fixed. In other words, the results showed
that if we know the groups of objects that are related, exact knowledge of the probabilities
is not critical.
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Figure 3: Impact of Changes in Node’s cluster

In this experiment we study the impact of poor knowledge (or lack of knowledge) about
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the grouping of related objects. In Figures 3 we study the impact of limited random changes
in the object cluster composition. The placement is generated based upon an initial access
pattern. Next, a random subset of 5%, 10%, etc of the nodes are chosen and the node’s
cluster membership is changed. The performance is tested using this altered access pat-
tern. We also measure the performance of an adapted placement based upon the observed
access pattern. As can be seen in the graph, changes to cluster composition result in an
increase in the average response time for both placement schemes. However, we see that
after adapting to the new pattern, we are able to reduce the response time. The response
time is reduced sharply in ���� ����� scheme, it drop to same level as no change to the
access pattern. We can also notice that even without adapting to the new placement, the
���� ����� scheme still performs better than �	�	� scheme.

From these three graphs we see an interesting result: information about the clustering or
grouping of related objects is more critical than exact information about the probabilities of
access. This is good news since these relationships are generally easy to discover statically
based upon the application semantics (e.g. urls in a given web page). The results also
underscore the importance of not making the assumption of independent access.

5.3 Impact of Secondary Storage
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Figure 4: Impact of Secondary Storage

In this experiment, we study the impact of the size of the disk buffer. In hierarchical
storage system, the secondary storage disks typically serves as a cache for data on tertiary
storage. User requests for data cached in the buffer are served without any access to tertiary
storage. If the requested object is not in the disk cache, the object is copied from tertiary
storage to buffer, then from the buffer to the user. A buffer replacement policy is used to
create space when the buffer becomes full. In our experiments, we use the popular Least
Recently Used (LRU) cache replacement policy.
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Figure 4 presents the performance for the various schemes for different buffer sizes.
The buffer size is varied from 400MB upto 20GB. We can observe from the graph that as
the size of the buffer increases, the average response time decreases for all schemes. We
also observe that the presence of a disk cache does not change the relative performance of
the ���� ����� scheme and the �	�	� scheme.

Since we have secondary storage as cache. The effect of the disk cache can be translated
into a change in the effective access pattern observed at the tertiary level. The hot objects
(objects with high static probability) may not be hot at the tertiary level since these objects
may always be cached on disk. In order to account for this change in the access pattern,
we can adapt the placement based upon the observed access pattern at the tape level as was
done in Section 5.2. In Figures 4, we study our new data placement based on observed
access pattern. As we can seen from the graph, the new adapted data placement slightly
better than original data placement.

5.4 Impact of Replication

In our original model, each object only has one copy in tertiary storage. To replicate ob-
jects on tertiary storage, there are two approaches. The first approach is to replicate some
frequently requested objects. We can use this approach with the ���	
 and �	�	� schemes.
However, disk caching will reduce the effectiveness of this approach because most of hot
objects will reside in cache. The second approach is to replicate related objects when free
space is available on a medium. This approach works for ���� ����� scheme and ��	

���� ����� scheme. In our experiment, we mainly study the ���� ����� scheme with
the second approach due to its superior performance. Unused segments on a medium are
filled using the following rules. First objects that have strong connections with objects al-
ready in the medium are replicated. If space still remains after considering such objects,
hot objects are replicated. The results of the experiment are shown in Figure 5. It can be
seen that the free data replication results in a noticeable improvement in performance.

5.5 Prefetching Issues

As stated in the last section, prefetching related objects can be beneficial. The disadvantage
is that prefetching delays pending requests further and uses up disk space. In this subsec-
tion, we study the impact of prefetching for the proposed schemes. In order to see the
impact of the amount of prefetching performed, we tested our six schemes with different
prefetching sizes. In this experiment prefetching is performed whenever possible. When
a new tape is loaded onto the drive, any object not in the disk cache may be prefetched.
The total amount of data prefetched from a single medium is varied from 0 to 300 MB.
The results of the experiment are shown in Figure 6. As can be seen, most schemes benefit
from prefetching when the prefetch size is 100 MB. For larger sizes, only the Edge Merge
scheme benefits – the average response time is reduced by 13%. This is explained by the
fact that the Edge Merge scheme is based on the relationship between objects. When one
object is retrieved, the most connected objects are likely to be in the same medium, so
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Figure 6: Impact of Prefetching on Different Schemes

prefetching is beneficial. Prefetching is not good for the Birth Scheme because under this
scheme related objects are scattered in different media. In fact the penalty of prefetching
larger than 100MB of data is higher than the benefit.

Next we study the choice of when to prefetch with the Edge Merge scheme in order
to make prefetching most effective. In the last experiment we prefetched blindly. In this
experiment, we prefetch only if there is a suitable object. There are two kinds of candidates
for prefetching when a medium is loaded for retrieving object ��: i) objects with strong
links from��; and ii) objects with a large static probability. The experiment is controlled by
two parameters: a minimum edge probability (say �����) and a minimum static probability
(say �����). If an object in same medium has edge probability greater than ����� or static
probability greater than �����, that object will be a prefetching candidate. Since we cannot
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prefetch all candidates the amount of data prefetched is limited. The results are shown in
Figure 7. Only Edge Merge is studied, with several prefetching policies. We study 4
policies: i) ����� = 0.5, ����� = 0.005, this is most restrictive policy; ii) ����� = 0.3,
����� = 0.0003, preference is given to high static probability objects; iii) ����� = 0.05,
����� = 0.005, preference is for high edge probability objects; and iv)����� = 0.05, �����

= 0.0003, this is the most liberal policy. As we can observed from graph the most liberal
policy gives better performance than the most strict policy. The two schemes that have a
low threshold for the edge probability give better performance for small prefetch sizes, but
their performance degrades for larger prefetch sizes.
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6 Conclusion

In this paper we address the important problem of data placement in tertiary storage taking
object relationships into account. We also study the advantage of limited replication in this
setting. This work is in contrast to earlier schemes that either focus on specific data types
or assume that data objects are independently accessed. To the best of our knowledge, this
is the first study to explore these issues. We propose five new data placement schemes. The
effectiveness of these schemes in reducing average response time is shown through exten-
sive experimentation using a detailed simulator. We find the Edge Merge scheme has best
performance. The performance of placement schemes that are known to be optimal under
the assumption of independent access is not as good as that of the proposed schemes.

We also show that our schemes can easily adapt to variations in the access pattern. In
fact this allows the schemes to be employed when no prior information about the access
pattern is available. The schemes progressively adapt to give good performance as the
access pattern is learned. Capturing the access pattern is easily achieved at the tertiary
storage level. In all cases, adjusting the placement to the new observed pattern resulted in
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significantly improved performance. Interestingly, our results show that the probabilities
of access (node and edge) do not have a big impact on our Edge Merge scheme. Changes
to the clustering of nodes, on the other hand, has a greater effect. This goes to show the
importance of the inter-relationships between objects. The use of controlled replication for
“free” is also developed and shown to be effective in improving performance further. The
impact of disk caching is easily handled in a manner similar to that of variation in access
patterns. The effective access pattern at the tertiary layer is measured and used to place the
data, rather than the overall access pattern. The techniques are coupled with prefetching
which is found to be beneficial for the Edge Merge scheme.

Overall, we see that the proposed techniques are very effective in placing data on ter-
tiary storage. The techniques perform much better than schemes that are optimal under the
assumption of independent access. In our experiments the Edge Merge scheme achieved as
much as 77% reduction in average access time over the state-of-the-art scheme (Static).
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Abstract 
 
The amount of scientific data generated by simulations or collected from large scale 
experiments have reached levels that cannot be stored in the researcher’s workstation or 
even in his/her local computer center.  Such data are vital to large scientific 
collaborations dispersed over wide-area networks.  In the past, the concept of a Grid 
infrastructure [1] mainly emphasized the computational aspect of supporting large 
distributed computational tasks, and managing the sharing of the network bandwidth by 
using bandwidth reservation techniques. In this paper we discuss the concept of Storage 
Resource Managers (SRMs) as components that complement this with the support for the 
storage management of large distributed datasets.  The access to data is becoming the 
main bottleneck in such “data intensive” applications because the data cannot be 
replicated in all sites.  SRMs are designed to dynamically optimize the use of storage 
resources to help unclog this bottleneck. 
 
1.  Introduction 
 
The term “storage resource” refers to any storage system that can be shared by multiple 
clients. We use the term “client” here to refer to a user or a software program that runs on 
behalf of a user. Storage Resource Managers (SRMs) are middleware software modules 
whose purpose is to manage in a dynamic fashion what resides on the storage resource at 
any one time.  SRMs do not perform file movement operations, but rather interact with 
operating systems, mass storage systems (MSSs) to perform file archiving and file 
staging, and invoke middleware components (such as GridFTP) to perform file transfer 
operations.  There are several types of SRMs: Disk Resource Managers (DRMs), Tape 
Resource Managers (TRMs), and Hierarchical Resource Managers (HRMs).  We explain 
each next.  Unlike a storage system that allocates space to users in a static fashion (i.e. an 
administrator’s interference is necessary to change the allocation), SRMs are designed to 
allocate and reuse space dynamically.  This is essential for the dynamic nature of shared 
resources on a grid. 
 
A Disk Resource Manager (DRM) manages dynamically a single shared disk cache.  This 
disk cache can be a single disk, a collection of disks, or a RAID system.  The disk cache 
is available to the client through the operating system that provides a file system view of  
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the disk cache, with the usual capability to create and delete directories/files, and to open, 
read, write, and close files.  However, space is not pre-allocated to clients.  Rather, the 
amount of space allocated to each client is managed dynamically by the DRM.  The 
function of a DRM is to manage the disk cache using some client resource management 
policy that can be set by the administrator of the disk cache. The policy may restrict the 
number of simultaneous requests by each client, or may give preferential access to clients 
based on their assigned priority.  In addition, a DRM may perform operations to get files 
from other SRMs on the grid.  This capability will become clear later when we describe 
how DRMs are used in a data grid.  Using a DRM by multiple clients can provide an 
added advantage of file sharing among the clients and repeated use of files.  This is 
especially useful for scientific communities that are likely to have an overlapping file 
access patterns.  One can use cache management policies that minimize repeated file 
transfers to the disk cache for remote grid sites.  The cache management policies can be 
based on use history or anticipated requests.   
 
A Tape Resource Manager (TRM) is a middleware layer that interfaces to systems that 
manage robotic tapes.  The tapes are accessible to a client through fairly sophisticated 
Mass Storage Systems (MSSs) such as HPSS, Unitree, Enstore, etc.  Such systems 
usually have a disk cache that is used to stage files temporarily before transferring them 
to clients.  MSSs typically provide a client with a file system view and a directory 
structure, but do not allow dynamic open, read, write, and close of files.  Instead they 
provide some way to transfer files to the client’s space, using transfer protocols such as 
FTP, and various variants of FTP (e.g. Parallel FTP, called PFTP, in HPSS).  The TRM’s 
function is to accept requests for file transfers from clients, queue such requests in case 
the MSS is busy or temporarily down, and apply a policy on the use of the MSS 
resources.  As in the case of a DRM, the policy may restrict the number of simultaneous 
transfer requests by each client, or may give preferential access to clients based on their 
assigned priority. 
 
A Hierarchical Storage Manager (HRM) is a TRM that has a staging disk cache for its 
use.  Thus, it can be viewed as a combination of a DRM and a TRM.  It can use the disk 
cache for pre-staging files for clients, and for sharing files between clients.  This 
functionality can be very useful in a data grid, since a request from a client may be for 
many files.  Even if the client can only process one file at a time, the HRM can use its 
cache to pre-stage the next files.  Furthermore, the transfer of large files on a shared wide 
area network may be sufficiently slow, that while a file is being transferred, another can 
be staged from tape.  Because robotic tape systems are mechanical in nature, they have a 
latency of mounting a tape and seeking to the location of a file.  Pre-staging can help 
mask this latency.  Similar to the file sharing on a DRM, the staging disk in an HRM can 
be used for file sharing. The goal is to minimize staging files from the robotic tape 
system.  The HRM design is based on experience in a previous project reported in [2]. 
 
The concept of an SRM can be generalized to the management of multiple storage 
resources at a site.  In such cases, the site SRM may use “site-file-names” (directory path  
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+ file names) which do not reflect the physical location and file names.  This gives the 
site the flexibility to move files around from one storage device to another without the 
site-file-names changing.  When a client accesses a file using a site-file-name, it may be 
given in response the physical location and file name.  The client can then use the 
physical file name to execute a file transfer. 
 
In general, it is best if SRMs are shared by a community of users that are likely to access 
the same files.  They can be designed to monitor file access history and maximize sharing 
of files by keeping the most popular files in the disk cache longer.  
 
2. The role of SRMs in a Data Grid 
 
Suppose that a client runs an analysis program at some site and wishes to get data stored 
in files located in various sites on the grid.  First, the client must have some way of 
determining which files it needs to access.  Checking a file catalog, using some index, or 
using a database system containing information about the files can accomplish this step.  
We refer to this step as “request interpretation”.  The information used in this step is 
often referred to as a “metadata catalog”.  The result of this step is a set of logical file 
names that need to be accessed.  The second step is to find out for each logical file where 
it physically resides or replicated.  Note that a single logical file can be replicated in 
multiple sites.  Files can be either pre-replicated in multiple sites based on expected use 
by a system administrator or replicated dynamically because they were accessed by 
clients at these sites.  In a grid environment, the information on the locations of replicated 
files exists in a “replica catalog”, a catalog that maps a single logical file name to 
multiple site-specific files.  The site-specific file name includes the name a machine and 
possibly port at the site, the directory path on that system, and the file name. 
 
In many grid environments today, the burden for the above work is being thrust on the 
clients.  Therefore, it is now recognized that such tasks can be delegated to middleware 
components to provide these services.  A “request manager” is the term used to refer to 
such services.  The request manager performs “request planning” based on some strategy, 
and then a “request execution” of the plan.  This terminology is used by several grid 
projects, notably PPDG [3], GriPhyN [4], and ESG [5]. There are three options to 
consider for request planning: either move the client’s program to the site that has the 
file, move the file to the client’s site, or move both the program and the data to another 
site for processing.  All three possibilities are valid, and much of the middleware 
development addresses this issue.  In all these cases, SRMs play an important role.  In the 
case that the program moves to the site where the file exists, it is necessary to “pin” the 
file in that site; that is, to request that the file remains in that site, so that when the 
program is executed the file is found in the cache. When the program completes, the file 
can be “released”.  In the case that the file needs to be transferred from a source site to 
target site (either to the client’s site, or to another site), it is necessary to “pin” the file in 
the source site, to reserve the space in the target site, and maintain this state till the 
transfer to the target site is complete.  Then the “pin” can be released.  Here, the SRM at  
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the source site has the role of managing the “pinning”, and the SRM at the target site has 
the role of allocating space (i.e. making space by removing other files if necessary), and 
reserving the space till the transfer completes.  SRMs need to deal also with various 
failures, so that space reservations do not persist forever, and “pins” do not persist in case 
that a “release” is not performed.  The concept of “pinning a file” is central to SRMs and 
will be discussed further later in this document.  
 
In a recent paper [6], the authors describe 5 layers needed to support grid applications: 
fabric, connectivity, resource, collective, and application layers.  The purpose of this 
layered approach is that services in each layer can rely on services in layers below it.  The 
fabric layer consists of computational resources, storage resources, network resources, 
catalogs, code repositories, etc.  The connectivity layer consists of communication, 
authentication, delegation, etc.  The resource layer consists of components (and 
protocols) for managing various resources: computing, storage, network, catalog, inquiry, 
etc. We see SRMs as belonging to the “resource layer”.  The collective layer consists of 
services such as replica catalog, replica selection, request planning, and request 
execution.   Request management is a generic term that uses any of the services in that 
layer, as well as services below it.  The application layer consists of application specific 
services.  The “request interpretation” we mentioned above belongs to this layer, since 
finding which logical files are needed by an application is specific to that application. 
 
3.  A practical use case: an analysis scenario 
 
We describe below an analysis scenario where the computation is performed at the 
client’s site, and the needed files are in other sites on the grid.  This is a common special 
case of grid resource usage in many scientific communities.  The schematic diagram of 
this analysis scenario is shown in Figure 1. 
 
As shown in Figure 1, at the client’s site there may be multiple clients sharing a local disk 
cache.  Each of the clients issues a logical request, typically consisting of a logical 
predicate condition for what they wish to analyze.  A typical example of such a request in 
the high-energy physics domain (where atomic particles are accelerated and made to 
collide at high speeds) might be: “find all the collisions (called “events”) that have an 
energy more that 50 GEV, and produced at least 1000 particles”.  A similar request for 
climate model analysis may be “get all temperatures and wind velocity for summer 
months in the Pacific Ocean region for the last ten years”.  These requests may be 
produced by a graphical user interface or composed by the client using some query 
language.  The Request Interpreter is a component that accepts the logical query and 
produces a set of logical file names that contain the desired data.  A Request Planner may 
check with a Replica Catalog and other network services such as the “network weather 
service” (which provides an estimate of current network availability) to determine the 
replica site from which to get each file.  The Request Executer then executes this plan.  
An example of a request executer, called DAGMAN (for Directed-Acyclic-Graph 
Manager) was recently developed by the Condor project [7].   
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The request executer could communicate with various SRMs on the grid, requesting 
space allocation and file pinning, and making requests for file transfers.  However, we 
have decided to delegate the task of making requests for file transfers to the SRMs.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1.  A schematic diagram of an analysis scenario 
 
Specifically, if a request for a set of files is made to an SRM, it is its responsibility to 
dynamically allocate space for the files, to negotiate with remote SRMs the pinning of 
files at the remote site, to invoke file transfer services to get the files from other sites and 
to release the files after they are used.  By making this fundamental design choice, we not 
only simplify the request executer’s task, but also permit clients to communicate directly 
with SRMs making multi-file requests.  The ability for clients to request files directly 
from an SRM was a basic requirement that guided our design since, in general, one 
cannot assume the existence of request managers.  Furthermore, clients should be able to 
make direct requests to SRMs if they so choose.  A secondary advantage of this design  
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choice is that it facilitates file sharing by the SRMs.  Since clients can make multi-file 
requests to the SRM, it can choose to serve files to clients in the order that maximizes file 
sharing, thus minimizing repeated file transfers over the network. 
 
For the analysis scenario shown in Figure 1, where all the files have to be brought to the 
local disk cache, the request executer makes its file requests to the local DRM.  The local 
DRM checks if the file is already in its cache.  If it is in the cache, it pins the file.  If it is 
not, it communicates with other SRMs to get the files.   
 
We have implemented several versions of DRMs as well as an HRM that interfaces to the 
HPSS mass storage system.  The HRM is implemented as a combination of a TRM that 
deals with reading/writing files from/to HPSS, and a DRM for managing its disk cache.  
Both the DRM and the TRM are capable of queuing requests when the storage systems 
they interface to are busy.  For example, a TRM interfacing with HPSS may be limited to 
perform only a few staging request concurrently, but it may be asked to stage hundreds of 
files.  These requests are then queued, and performed as fast as HPSS will perform. The 
SRMs use grid-enabled secure file transfer services provided by the Globus project [8], 
called GridFTP. These DRM and HRM components are in the process of being used by 
one of the experiments of the Particle Physics Data Grid (PPDG) [3], and the Earth 
Science Grid (ESG) [5] to perform grid file replication functions.  The HRM was also 
used in a demo for SuperComputing 2000 as part of an infrastructure to get files from 
multiple locations for an Earth Science Grid application (ESG).  This was described in a 
recent paper [9].  We are now evaluating several “cache replacement policies” to be used 
by DRMs, by both conducting simulations and setting up real testbeds. 
 
4.  The implementation of the analysis scenario 
 
The analysis scenario described in Figure 1 was implemented as part of a demo during 
the Supercomputing 2001 conference.  The application used in the demo was high-energy 
physics (HEP).  Figure 2 shows the actual setup of the demo.  From a client’s point of 
view the system accepts a logical query request, and takes care of all the details of 
figuring out what files should be transferred, and where to get them from. The client can 
observe in a graphical display the progress of file transfers over time.   Figure 3 shows 
the progress of transfer of each file managed by the client’s DRM.  Partially filled bars 
represent transfer in progress.  When a file that arrives is processed and released by the 
client, it may be removed automatically by the DRM if it needs to make space for 
additional files. 
 
In order to illustrate the usefulness of SRMs, we describe next in some detail the steps of 
processing a logical query in a grid environment.  In figure 2, the Bit-Map index is a 
specialized index used as the “request interpreter”, which was developed as part of 
another project [10].  It gets as input a logical request made of logical conditions over 
range predicates.  An example of such a request in this HEP application is to find all files 
that contain collisions (or “events”) for which the following condition holds:  
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((0.1 < AVpT < 0.2) ^ (10 < Np < 20)) v (N > 6000),  
 
where AvpT is the “average momentum”, Np is “the number of pions” produced in this 
collision, and N is the “total number of particles produced in this collision”.  The result of 
the Bit-Map index is a set of logical file names, such as: 
 
{star.simul.00.11.16.tracks.156,…, star.simul.00.11.16.tracks.978}, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  A setup for processing logical analysis requests over the grid 
 
where “star” is the name of the experiment at Brookhaven National Laboratory, “simul” 
means simulation data, “00.11.16” is the date the data was generated, “tracks” refers to 
the type of data in the file, and the number is the file ID.  This set of logical file names is 
given to the next component, the Request Manager. 
 
The Request Manager (which consists of both a Request Planning and Request Execution 
components) is a component that chooses the site where to get each file, and then 
oversees the execution of the request.  Given that a file may be replicated in multiple 
locations, it chooses the most appropriate location.  Each file is assigned a “site file 
name” in the form of a URL, such as: 
 
gsiftp://dg0n1.mcs.anl.gov/homes/sim/gsiftp/star.simul.00.11.16.tracks.156,  
 
where “gsiftp” is the protocol for transferring the file, “dg0n1.mcs.anl.gov” is the 
machine name, “homes/sim/gsiftp” is the directory path, and  
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“star.simul.00.11.16.tracks.156” is the file name. 
 
Similarly, if the site that has the file is managed by an SRM, the protocol used will say 
“hrm” or “drm”.  For example, for accessing the same file out of an HPSS tape system, 
the URL used is:  
 
hrm://dm.lbl.gov:4000/home/dm/srm/data1/star.simul.00.11.16.tracks.156, 
 
where “dm.lbl.gov:4000” is the name of the machine that has HRM running on it, and the 
port used by HRM, “home/dm/srm/data1” is the directory on the HPSS system where the 
file resides, and “star.simul.00.11.16.tracks.156” is the file name. 
 
Note that files can reside on systems that may or may not have an SRM managing the 
storage system.  We set up the demo to illustrate that an SRM can work with systems 
managed by other SRMs, or systems that have some grid middleware (such as GridFTP), 
or even systems that have no middleware software at all (using only FTP to transfer 
files).  In the demo, we set up four types of nodes: one with a DRM managing the storage 
system (at LBNL), one with an HRM managing access to an HPSS system (at NERSC-
LBNL), one that has no SRM but has GridFTP available on it (at ANL), and one that has 
only FTP available on it (at LLNL). 
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Figure 3.  Display of the dynamic progress of file transfers 
 

Once the Request Manager has assembled the set of URLs for the files needed, it invokes 
the local DRM (at the Supercomputing Conference floor at Denver).  The local DRM 
then checks for each file if it is already in cache, and if the file is not found it contacts the 
site that has it, requesting pinning of files, and invoking the appropriate file transfer 
service (GridFTP or FTP in this demo).  Once a file is transferred, it sends a “release of 
file” notice to the source site. 
 
The SRMs are multi-threaded components that can support simultaneous file transfer 
requests from multiple clients.  Thus, given a request for multiple files, the client’s DRM 
will initiate the coordination of space reservation, pinning of files, and multiple file 
transfer requests to multiple sites.  The number of such concurrent processing of file 
transfer requests is a policy decision.  Since multiple clients may share a local DRM, the  
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DRM may have a policy to restrict the amount of space and the number of files that a 
client can hold simultaneously. 
 
The display of file transfers in Figure 3 was designed to show dynamic progress.  The 
local disk cache is checked every 10 seconds (a parameterized choice) for the size of files 
being transferred, and the display is updated.  The horizontal bar below file progress 
display shows the total bytes transferred as a fraction of the total bytes requested.  
Moving the curser over any of the file bars provides information of the source location, 
size, and transfer rate.  This is shown in the lower section of the display.  Finally, there is 
a “message section” at the bottom to inform the client of events as they occur, including 
failures to access files and the reasons for that, such as “system down”. 
 
The above scenario was limited to cases where all the files are moved to the client’s 
location.  The generalization of this scenario is that the request planner generates a plan 
where the execution of the analysis can be partitioned to run on multiple sites (perhaps 
the sites where the data reside to minimize file transfer traffic).  In this general scenario, 
both data and programs can move to the locations best suited to execute a request in the 
most efficient manner possible.  The general scenario also includes moving the results of 
computations to the client, as well as storing results in storage systems and archives on 
the grid.  Thus, in general, SRMs can be invoked at multiple locations by a single client 
to satisfy the request plan. 
 
5.  Advantages of using SRMs 
 
As can be deduced from the discussion above, the main advantage of an SRM is that it 
provides smooth synchronization between shared resources by pinning files, releasing 
files, and allocating space dynamically on an “as-needed” basis.  A reasonable question is 
why use SRMs if it is possible to use GridFTP and FTP directly as was done in the above 
demo.  We recall that SRMs perform two main functions: dynamic space allocation and 
dynamic file pinning.  Indeed, if space is pre-allocated, and the files are “permanently” 
locked in the source site there is no need for SRMs.  However, in a grid environment 
where resources need to be reused dynamically, SRMs are essential.  SRMs perform the 
management of quotas, the queuing of requests when resources are tight or if the clients 
exceed their quota, the freeing of space of files allocated but not released by clients 
(similar to “garbage collection”), and providing the management of buffers for pre-
staging from mass storage systems.  Pre-staging and buffering are important because the 
network bandwidth available to a client may vary in an unpredictable fashion. 
 
A second advantage of using SRMs is that they can eliminate unnecessary burden from 
the client.  First, if the storage system is busy, SRMs can queue requests, rather than 
refuse a request.  Instead of the client trying over and over again, till the request is 
accepted, an SRM can queue the request, and provide the client with a time estimate 
based on the length of the queue.  This is especially useful when the latency is large such  
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as for reading a file from tape.  If the wait is too long, the client can choose to access the 
file from another site, or wait for its turn. Similarly, a shared disk resource can be 
temporarily full, waiting for clients to finish processing files, and therefore queuing 
requests is a better alternative than simply refusing the request. 
 
A third advantage to the clients is that SRMs can insulate them from storage systems 
failures.  This is an important capability that is especially useful for HRMs since MSSs 
are complex systems that fail from time to time, and may become temporarily 
unavailable.  For long lasting jobs accessing many files, which are typical of scientific 
applications, it is prohibitive to abort and restart a job.  Typically, the burden of dealing 
with an MSS’s temporary failure falls on the client.  Instead, an HRM can insulate clients 
from such failures, by monitoring the transfer to the HRM’s disk, and if a failure occurs, 
the HRM can wait for the MSS to recover, and re-stage the file.  All that the client 
perceives is a slower response.  Experience with this capability was shown to be quite 
useful in real situations [2]. 
 
A fourth advantage is that SRMs can transparently deal with network failures.  SRMs can 
monitor file transfers, and if failures occur, re-try the request.  They can provide clients 
the information of such failures, so that clients can find other alternatives, such as getting 
the file from its original archive if a transfer from a replication site failed.  Recently, there 
is an interest of managing the inherent unreliability of the network as part of an extended 
middleware file transfer service, called “Reliable File Transfer” (RFT).  It is intended as a 
service layer on top of GridFTP that will try to re-transfer files in case of temporary 
failures of the network, will queue such requests, and will provide status of the requests.  
When such services are available, SRMs can take advantage of them.  Otherwise, as is 
the case for systems that have no grid middleware software (e.g. only FTP), SRMs need 
to protect the clients from unreliable network behavior. 
 
A fifth advantage of SRMs is that they can enhance the efficiency of the grid, eliminating 
unnecessary file transfers by sharing files.  As mentioned above, it is typical of scientific 
investigations that multiple clients at the same site use overlapping sets of files.  This 
presents an opportunity for the SRM at that site to choose to keep the most popular files 
in its disk cache longer, and providing clients with files that are already in the disk cache 
first.  Managing this behavior is referred to as a “replacement policy”, that is deciding 
dynamically which file to replace when space is needed.  This problem is akin to 
“caching algorithms”, which have been studied extensively in computer systems and web 
caching.  However, unlike caching from disk to main memory, the replacement cost in 
the grid can be quite high, as files have to be replaced from remote locations and/or from 
tertiary storage.  Deploying efficient replacement policies by the SRMs can lead to 
significant reductions in repeated file transfers over the grid. 
 
Finally, one of the most important advantages of using SRMs is that they can provide a 
“streaming model” to the client.  That is, they provide a stream of files to the client 
programs, rather than all the files at once.  This is especially important for large  
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computing tasks, such as processing hundreds, or even thousands of files.  Typically, the 
client does not have the space for the hundreds of files to be brought in at once.  When 
making such a request from an SRM, the SRM can provide the client with a few files at a 
time, streaming of files as they are used and released.  This is managed by the SRM 
enforcing a quota per client, either by the amount of space allocated and/or by the number 
of files allocated.  As soon as files are used by the client and released, the SRM brings in 
the next files for processing in a streaming fashion.  The advantage to this “streaming 
model” is that clients can set up a long running task, and have the SRM manage the 
streaming of files, the pre-staging of files, the dynamic allocation of space, and the 
transferring of files in the most efficient way possible. 
 
6.  “Pinning” and “two-phase pinning” 
 
The concept of pinning is similar to locking.  However, while locking is associated with 
the content of a file to coordinate reading and writing, pinning is associated with the 
location of the file to insure that a file stays in that location. Unlike a lock, which has to 
be released, a "pin" is temporary, in that it has a time-out period associated with it, and 
the "pin" is automatically released at the end of that time-out period. The action of 
“pinning a file” results in a “soft guarantee” that the file will stay in a disk cache for a 
pre-specified length of time. The length of the “pinning time” is a policy determined by 
the disk cache manager.  Pinning provides a way to share files that are not permanently 
assigned to a location, such as replicated files.  This permits the dynamic management 
and coordination of shared disk caches on the grid.  Since we cannot count on pins to be 
released, we use the pinning time-out as a way to avoid pinning of files forever.   
 
Two-phase pinning is akin to the well known “two-phase locking” technique used 
extensively in database systems.  While two-phase locking is used very successfully to 
synchronize writing of files and to avoid deadlocks, two-phase pinning is especially 
useful to synchronize requests for multiple files concurrently; that is, if the client needs 
several files at the same time, it can first attempt to incrementally pin these files, and only 
then execute the transfers for all files, then releasing them as soon as each is transferred.  
We note, that even if file replicas are read-only, a deadlock (or pin-lock) as a result of 
pinned files can occur if we allow requests for multiple files concurrently.   However, if 
we assume that file requests are asynchronous and that time-outs to release files are 
enforced, pin-locks are eventually resolved because pinned files are released after they 
time-out.  Nevertheless, two-phase pinning is a useful technique to avoid system 
thrashing by repeatedly pinning and pre-emptying pins.  It requires coordination between 
the SRMs. 
 
7.  The design of “Read” and “Write” functionality of SRMs 
 
When a request to read a file is made to an SRM, the SRM may already have the file in 
its cache.  In this case it pins the file and returns the location of the file in its cache.  The 
client can then read the file directly from the disk cache (if it has access permission), or  
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can copy or transfer the file into its local disk.  In either case, the SRM will be expected 
to pin the file in cache for the client for a period of time.  A well-behaved client will be 
expected to “release” the file when it is done with it.  This case applies to both DRMs and 
HRMs. 
 
If the file is not in the disk cache, the SRM will be expected to get the file from its source 
location.  For a DRM this means getting the file from some remote location.  For an 
HRM, this means getting the file from the MSS.  This capability simplifies the tasks that 
the client has to perform.  Rather than return to the client with “file not found”, the SRM 
provides the service of getting the file from its source location.  Since getting a file from 
a remote location or a tape system may take a relatively long time, it should be possible 
for the client to make a non-blocking request.  To accommodate this possibility the SRMs 
provide a callback function that notifies the client when a requested file arrives in its disk 
cache and the location of that file.  In case that the client cannot be called back, SRMs 
also provide a “status” function call that the client can use to find out when the file 
arrives.  The status function can return estimates on the file arrival time if the file has not 
arrived yet.   
 
HRMs can also maintain a queue for scheduling the file staging from tape to disk by the 
MSS.  This is especially needed if the MSS is temporarily busy.  When a request to stage 
a file is made, the HRM checks its queue.  If the HRM’s queue is empty, it schedules its 
staging immediately.  The HRM can take advantage of its queue to stage files in an order 
optimized for the MSS.  In particular, it can schedule the order of file staging according 
to the tape ID to minimize tape mounts and dismounts, as described in [2].  Like a DRM, 
the HRM needs to notify the client that the file was staged by issuing a callback, or the 
client can find that out by using “status”. 
 
A request to “write” a file requires a different functionality.  In the case of a DRM, if the 
file size is provided, then that space is allocated, and the client can write the file to it.  If 
the file size is not provided, a large default size is assumed, and the available space is 
adjusted after the file is written.  In the case of an HRM, the file is first written to its disk 
cache in exactly the same way as the DRM description above.  The HRM then notifies 
the client that the file has arrived to its disk using a callback, then it schedules it to be 
archived to tape by the MSS.  After the file is archived by the MSS, the SRM notifies the 
client again using a callback.  Thus, the HRM’s disk cache is serving as a temporary 
buffer for files being written to tape.  The advantage of this functionality by HRM is that 
writing a file to a remote MSS can be performed in two stages: first transferring the file 
to the HRMs disk cache as fast as the network permits, and then archiving the file to tape 
as a background task.  In this way the HRM can eliminate the burden from the client to 
deal with a busy MSS as well as dealing with temporary failures of the MSS system. 
 
One of the practical implementation problems that SRMs have to deal with is an incorrect 
or missing file size.  In both cases of getting or putting a file into the SRM space, the 
SRM needs to allocate space before the transfer of the file into its disk cache.  If the file  
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size provided (or assigned by default) is smaller than the actual file size, then this can 
cause various failures, such as writing over other files, or overflowing the total space that 
the SRM manages.  There are various methods of dealing with this problem (such as 
interrupting the transfer or permitting incremental growth of the allocated space), but all 
require the dynamic monitoring of the file transfers, and the ability to terminate the 
transfer process if necessary.  Since SRMs cannot terminate the transfer process initiated 
by the client (in the case that it puts a file into the SRM’s disk cache), this problem 
presents a special challenge.  The solution to this problem usually requires modifications 
to the file transfer server program. 
 
SRMs can also be used to coordinate a third party file movement.  Essentially, an SRM in 
site Y can be asked to “pull” a file form site X.  This request can be made by a client in a 
third location.  The SRMs in the two sites X and Y then coordinate space allocation, file 
pinning, and file release.  The actual transfer of the file is a regular two-way file transfer 
from X to Y.  The usefulness of this functionality is for clients that produce files, store 
then temporarily in some location X, and then request their movement to an archive in 
site Y.  The inverse functionality can also be provided, where the SRM at site X is asked 
to “push” the file to site Y. 
 
8. Conclusion 
 
We discussed in this paper the concept of Storage Resource Managers (SRMs), and 
argued that they have an important role in streamlining grid functionality and making it 
possible for storage resources to be managed dynamically.  While static management of 
resources is possible, it requires continuous human intervention to determine where and 
when file replicas should reside.  SRMs make it possible to manage the grid storage 
resources based on the actual access patterns.  In addition, SRMs can be used to impose 
local policies as to who can use the resources and how to allocated the resources to the 
grid clients.  We also introduced the concept of "pinning" as the mechanism of requesting 
that files stay in the storage resource until a file transfer or a computation takes place.  
Pinning allows the operation of the coordinated transfer of multiple files to be performed 
as a "2-phase pinning" process: pin the files, transfer, and release pins.  We have 
developed several versions of prototype SRMs and used them in test cases as part of the 
Particle Physics Data Grid (PPDG) and Earth Science Data Grid (ESG) projects.  A 
prototype of an HRM was also developed at Fermi National Accelerator Laboratory 
which interfaces to their Enstore MSS.  In addition, efforts are now underway to 
coordinate the SRM functionality across several projects, including the development of 
an HRM at Thomas Jefferson National Accelerator Facility to interface to their JASMine 
MSS, and the European Data Grid to interface to their CASTOR MSS.  The emerging 
concepts and interfaces seem to nicely complement other grid middleware services being 
developed by various grid projects, such as providing efficient and reliable file transfer, 
replica catalogs, and allocation of compute resources. 
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Abstract 
The High Performance Storage System (HPSS) is a mature Hierarchical Storage 
Management (HSM) system that was developed around a network-centered architecture, 
with client access to storage provided through third-party controls. Because of this 
design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to 
provide cost effective, large-scale storage systems and high performance global file 
access for clients. Key attributes of SAN file systems are found in HPSS today, and more 
complete SAN file system capabilities are being added. This paper traces the HPSS 
storage network architecture from the original implementation using HIPPI and IPI-3 
technology, through today’s local area network (LAN) capabilities, and to SAN file 
system capabilities now in development. At each stage, HPSS capabilities are compared 
with capabilities generally accepted today as characteristic of storage area networks and 
SAN file systems. 
 
1. Introduction 
Storage Area Network (SAN) technology has a bright future as measured by its growing 
market acceptance. Web information source allSAN.com [10] reports that: 
 

Within the mainframe arena, SANs already represent upwards of 25% of data 
center traffic. Outside of the mainframe area, SANs are expected to account for 
25% of external disk storage and approximately 50% of multi-user tape storage by 
2003 

 
We believe that SAN technology will only reach its full potential when it can be used to 
provide secure sharing of data between heterogeneous client systems. To realize this 
potential requires appropriate storage system software and hardware architectures. One 
use for such a capability is a SAN-based global file system. A generic host-based file 
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system provides capabilities such as a naming mechanism, data location management, 
and access control. A global file system extends this capability to multiple independent 
operating systems by using specialized protocols, locking mechanisms, security 
mechanisms, and servers to provide device access. A SAN-based global file system is 
distinguished from other global file systems by the characteristic that client computers 
access storage devices directly, without moving data through a storage server.  
 
The High Performance Storage System design and implementation are focused on 
hierarchical and archival storage services and therefore are not intended for use as a 
general-purpose file system. HPSS is nevertheless a file system, and specifically, a global 
file system. While any client applications (such as a physics code) can access HPSS 
devices with normal Unix-like calls to the HPSS client API library, in normal operation 
these applications are data transfer applications that transfer data between HPSS files and 
the local file system. HPSS has a network-centered architecture that separates data 
movement and control functions and offers a secure, global file space with characteristics 
normally associated with both LAN-based and SAN-based architectures.  
 
Figure 1 illustrates a typical deployment of HPSS. Note in particular the separation of 
control and data transfer networks (which may be physical or logical). This inherent 
separation of control and data helps enable HPSS to present a secure, scalable, global file 
system image to its users and leads naturally to full global SAN file system capabilities in 
the near future. The terms “Mover” and “Core Server” in Figure 1 are fairly descriptive 
of their function, but they are more fully described in Section 5. 
 
This paper tracks the development of concepts and implementation for the separation of 
control and data functions in storage systems and the importance of these concepts for 
SAN file systems. These concepts are rooted in work that began over two decades ago [9] 
and prototyped a decade ago in the National Storage Laboratory (NSL) [3]. Lessons 
learned at the NSL led to the architecture of the High Performance Storage System 
(HPSS), which today supports a variety of high-speed data networks [4, 5]. HPSS is a 
collaborative development whose primary partners are IBM and the U.S. Department of 
Energy. This collaboration has been in existence for a decade, and HPSS development is 
ongoing. We discuss simple extensions to HPSS to exploit today’s SAN technology 
within large-scale HSM storage systems. We conclude with a section on lessons learned. 
 
2. SAN Terminology 
Several definitions of a Storage Area Network exist as related to common, shared 
repositories of data. The Storage Networking Industry Association (SNIA) online 
dictionary offers the following definition of Storage Area Network [1]: 
 

1. A network whose primary purpose is the transfer of data between computer 
systems and storage elements and among storage elements. Abbreviated SAN. 
SAN consists of a communication infrastructure, which provides physical 
connections, and a management layer, which organizes the connections, storage 
elements, and computer systems so that data transfer is secure and robust. The 
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term SAN is usually (but not necessarily) identified with block I/O services rather 
than file access services. 

2. A storage system consisting of storage elements, storage devices, computer 
systems, and/or appliances, plus all control software, communicating over a 
network.  
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Figure 1: HPSS storage systems support a network centered architecture 
 
Our interest is in large, high performance storage systems where 100s – 1000s of 
terabytes of data can be shared among client computers. The focus of SANs in our paper 
is from Bancroft et al [2]: 
 

The implementation [of a SAN] permits true data and/or file sharing among 
heterogeneous client computers. This differentiates [SAN file systems] from SAN 
systems that permit merely physical device sharing with data partitioned (zoned) 
into separate file systems. … The software orchestrating the architecture is what 
unites the components and determines exactly how these elements behave as a 
system.  
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The same paper defines the notion of a SAN file system. Figure 2 illustrates the control 
and data flow of a such a generic SAN file system. 
 

The optimum vision is a single file system managing and granting access to data 
in the shared storage with high bandwidth Fibre Channel links [today there are 
other network technologies] facilitating transfers to and from storage. … The 
objective … is to eliminate file servers between clients and storage with minimum 
or no impact to the controlling applications. Control information is typically 
separated from data traffic and in some architectures the two are isolated on 
completely separate networks.  

 

RAID RAID

Shared RAID

Meta
da

ta

M
et

ad
at

a

SAN Clients
Metadata
Controller
and Global
Namespace

Step 1. Client
requests read
access to file. Step 2. Access

request is
granted and
metadata is
passed to
requesting
client.

Bl
oc

k 
D

at
a 

Ac
ce

ss

Step 3. Data is
transferred
directly from
shared storage
to client.

Separately,
another SAN
client can access
the same file
with assurance
that sharing is
orderly and safe.

Control Network

SAN Fabric

Supercomputer SMP Computer Workstation

Figure 2: A file read operation illustrates the separation of data and  
control in a typical SAN file system. 

 
It will be shown in the following sections that HPSS current implementation incorporates 
significant components of the SAN file system functionality described in the above 
definition, and how additional SAN file system functionality will be added to HPSS. 
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3. SAN Precursors 
Although the term “SAN” is relatively new, the basic ideas of shared file systems have 
been around since the early days of computing. Papers by Thornton [8] and Watson [9] 
trace shared file concepts to the Octopus network at Lawrence Livermore National 
Laboratory in the 1960s, the Network Systems Corporation Hyperchannel, and the IEEE 
Mass Storage Reference Model in the late 1970s and early 1980s. 
 
The foundation for HPSS can be traced to 1992 and the National Storage Laboratory 
(NSL). The NSL was a joint government/industry collaboration investigating high 
performance storage system architectures and concepts [3]. Work at the National Storage 
Lab led to NSL-Unitree, a prototype hierarchical storage system incorporating a 
distributed storage architecture that leveraged third-party data transfers almost a decade 
in advance of today’s SAN deployments. A third-party data transfer is a data transfer 
controlled by an agent. The agent controls the data transfer by communicating with both 
the data source and the data sink in setting up the transfer. The agent does not participate 
in the actual movement of the data. 
 
MAXSTRAT Corporation, a partner in the National Storage Lab, built high-end HIPPI-
based RAID devices known as Gen4 and Gen5 arrays. These disk arrays were among the 
highest performing RAID disk devices of their day. Using the IPI-3 protocol, NSL-
Unitree was able to achieve data rates of about 60 MB/s between a Cray C90 and 
MAXSTRAT disks over a HIPPI network. 
 
IPI-3 was the third release of the Intelligent Peripheral Interface, a standards-based I/O 
interface that at the time was considered to be a high-end alternative to SCSI. Like SCSI, 
IPI-3 could exist as a native physical level protocol, or it could be encapsulated and sent 
over another general-purpose protocol such as HIPPI framing protocol. Disks were 
available equipped with a native IPI interface. Both IPI and TCP/IP could coexist on a 
HIPPI network through the use of HIPPI framing protocol.  
 
The MAXSTRAT disk array was connected to a high performance computer via parallel 
or serial HIPPI, which has a nominal data rate of 100 megabytes per second. Originally 
designed as a point-to-point parallel interface, HIPPI evolved to be a switchable serial 
interface using a fibre transmission medium. Through the use of HIPPI switches, the 
Gen5 could be connected to multiple computers. By using encapsulated IPI, each 
computer could communicate with any Gen5 disk array as though it were a local IPI-3 
device. Today this would be analogous to sharing a Fibre Channel disk array using SCSI 
over Fibre Channel, or more recently Gigabit Ethernet with SCSI over IP.  
 
Significantly, the Gen4 and Gen5 implemented the third-party capabilities of the IPI-3 
standard. With this capability, IPI-3 commands could be sent to a central server that 
mediated the requests and redirected them to source and sink for third-party transfer to 
bring order and preserve data integrity. The following description of the third-party 
architecture from Chris Wood [6]: 
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Third-party transfer architectures address the data "ownership" and access control 
issues by consolidating all data ownership and file system knowledge in a 
centralized server. Unlike NFS-style architectures, third-party transfer allows for 
direct disk I/O access to the central data store by clients. This architecture 
eliminates the burden of heavy inter-host lock manager and semaphore traffic and 
presents a well understood, NFS-like application interface. User data flows at 
local disk speeds (vs. network speeds) over dedicated high-speed disk channels 
while control traffic flows over a separate control network. The goal is to deliver 
data at optimal speeds with no interruptions for read/write commands and flow-
control handshaking. 
 

Essentially, The NSL proved the basic concepts of what we would now call a SAN file 
system. Figure 3 illustrates a file read operation in the NSL prototype. Note that Figure 3 
is almost identical with Figure 2. Details of the protocol operation are given in [3]. 
 

NSL UniTree Clients
NSL

UniTree
Prototype
circa 1992

Step 1. Client
requests read
access to file.

IPI-3 Block Data Transfer

Step 3. Data is
transferred
directly from
shared
MAXSTRAT disk
array to client
using IPI-3 over
HIPPI network.

MAXSTRAT
Gen4 RAID

Secure Private
Control Network

Metadata

Step 2. Access
request is granted
and 3rd party IPI-3
command is passed
to MAXSTRAT
Gen4 disk array

SCSI Disks
and Tapes

HIPPI
Switch

Control and
Data Network

Supercomputer SMP Computer Workstation

 
Figure 3: The NSL Prototype provided 3rd party “LAN-less” data transfers. 

 
The NSL prototype proved several points to the NSL collaboration:  
1. It established that data transfers between a client and network attached disks could 

give as good or better performance as native client disk. 
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2. Third-party data transfer allowed the transformation of the NSL server to function as 
a metadata engine that could effectively control data sharing among clients while 
maintaining high data rates.  

3. Security is aided by separating control and data flow to separate networks. 
4. Hierarchical storage, with movement of data between disk and tape, could be 

implemented in the shared disk environment. 
 
4. Security Implications for SAN File Systems 
Whenever data is shared among multiple clients, effective security mechanisms must be 
provided. In the case of robust global storage systems, security has historically been 
enforced by the file or storage server that effectively isolates clients from storage devices. 
NFS v4, AFS, DFS, and HPSS are examples of global storage systems that offer 
authenticated and authorized transfers between the client and storage servers. However 
when you make storage devices directly accessible to client systems, as in today’s SANs, 
you have in effect opened a “Pandora’s box” of security problems. 
 
In today’s SAN environments, shared storage appears as directly accessible devices on 
every client requiring access to the shared data. The level of protection for a shared SAN 
device is therefore no stronger than it would be for a local device attached to the client. 
This means that if any SAN client machine is compromised at the operating system root 
level, all shared data has been compromised. In effect, all shared-storage clients need to 
trust each other. SAN zoning limits visibility of devices to specified hosts and can be 
used to protect data by limiting access. But in cases where the goal is to make data 
globally accessible to many clients, security risks are incurred if any but the most trusted 
clients are added. 
 
The NSL developers recognized this issue and provided a reasonable level of security by 
using a secure private control network connection between the storage servers and the 
network attached storage devices (See Figure 3). The storage system controlled access to 
all shared data. Clients did not have direct access to the storage devices because of the 
nature of the IPI-3 third-party protocol. Access to a network connection was granted to 
processes running on the storage clients on a per-transfer basis. The storage system used 
the secure private network to communicate with the MAXSTRAT disks, acting as the 
third-party agent facilitating all transfers between the storage clients and the network 
attached peripherals. It would have been very difficult for a rogue client to compromise 
the security of the NSL storage environment with this mechanism. 
 
A similar level of security must be developed for use in a current SAN environment 
before the true power of SAN file systems can be safely realized. Object based 
“Network-Attached Secure Disks” [7] could solve this problem if they are accepted 
within the storage marketplace.  
 
5. The Development of HPSS 
The HPSS collaboration [4, 5] took up the work of the National Storage Laboratory 
collaboration in 1992 under a Cooperative Research and Development Agreement 
(CRADA) between IBM and several U.S. Department of Energy Laboratories (Lawrence 
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Livermore, Los Alamos, Oak Ridge, and Sandia). After reviewing the projected 
requirements of next generation high performance HSM systems and all available 
hierarchical storage systems then in existence, the collaboration concluded that it was 
necessary to develop new software that would provide a highly scalable storage system, 
anticipating the growth in data-intensive computing (100s – 1000s of terabytes and 
Gigabyte/sec data transfer rate ranges) while also providing robust security for global file 
access. As this was to be a collaborative development, there was need for open access to 
source code among all collaboration members. The first production release of HPSS was 
in 1995, with major releases since then at approximately one-year intervals. Development 
is ongoing, with about 28 full time equivalent developers, including about 16 in the 
Department of Energy labs. Ongoing development is discussed in later sections. There 
are currently over 40 production HPSS sites worldwide in government, research, and 
education. 
 
The scalability requirement led to a network-centered architecture that allowed more 
storage capacity and increased data rates by adding management and storage elements to 
a scalable network. Like the earlier NSL prototype, HPSS was designed to accommodate 
intelligent third-party devices based on the model of the MAXSTRAT Gen4 and Gen5 
disk arrays [4]. It was assumed that more intelligent third-party devices would follow; 
however, it was recognized that most of the storage devices that would be attached to 
HPSS would be conventional disks, disk arrays, and tape libraries. To accommodate 
conventional devices, the HPSS collaboration introduced the idea of a “Mover”. The 
notion was to attach SCSI disks and tape drives to low-cost computers running a 
lightweight HPSS Mover protocol. A data Mover and the disks and tapes attached to it 
formed the equivalent of an intelligent third-party device. Thus the HPSS architecture 
enabled both ordinary and intelligent devices and reasonably priced computers to work 
together while preserving security and a global name space. 
 
Figure 4 illustrates the network-centered data flow of HPSS for a file read operation. 
Comparing this figure with the previous NSL illustration (Figure 3), one can see that the 
Mover and the disks and tape drives attached to it take on the attributes of an intelligent 
third-party device. 
 
The HPSS Core Server presents the image of a file system to the user. Its main function is 
to manage the client interface and the system’s metadata (e.g. data location and security 
data). At the lower level involved with data transfer, the lightweight HPSS Mover code 
works only with block I/O. Unlike conventional network-attached storage (NAS), HPSS 
Movers transfer data over the network at a block level, not a file level, simulating the 
low-level I/O of early intelligent third-party devices and today’s SAN-attached devices. 
The Mover is strictly an intermediary to transfer logical blocks of data under control of 
the HPSS Core Server. See references [3, 4, 5] for details. 
 
Use of multiple Movers allow many concurrent data transfers to provide very high 
aggregate data transfer rates. HPSS also supports data striping (parallel data transfers), 
thereby providing very fast single file transfer rates [4].  
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HPSS, with its network-centered, third-party architecture is well suited to leverage SAN 
technology. The next section explains how SAN technology is used with HPSS today, 
and the sections that follow show enhancements will further exploit SAN technology. 
 
6. Today’s SANs and HPSS 
Today's SAN technology promises better management and sharing of storage devices 
across HPSS Movers. SAN technology can simplify administration of large amounts of 
storage and can lead to better system reliability.  
 
HPSS LAN-based configurations (refer back to Figure 1) are capable of providing very 
high bandwidths, both for individual data transfers and in the aggregate across concurrent 
file transfers and can furthermore support parallel, striped data transfers across multiple 
disks or tape drives. The current HPSS Mover architecture allows devices to be run at 
data transfer rates equal to 85% to 95% of the best possible device data transfer rates 
achievable at the block I/O level. Inexpensive network technologies such as Gigabit 
Ethernet, together with more efficient TCP/IP protocol implementations assure that LAN-
centered technology is neither a performance bottleneck nor a cost issue for today’s 
HPSS sites. Moore’s Law has made Mover hardware inexpensive for lower I/O rate 
devices such as tapes but for high throughput disk environments (100s MB/s per Mover) 
Movers are still relatively expensive. Thus, neither initial cost nor performance are sole 
motivators for introducing SAN technology into HPSS in some environments. For those 
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requiring Movers capable of highest I/O rates, cost may be a motivator. SAN capabilities 
are important to the HPSS community because they will allow users of HPSS much more 
flexibility to reconfigure disks and tape drives when needs change.  
 
The ability to reconfigure is especially important in case of component failures, including 
network, Mover, and device components. With SAN technology, disks and tape drives 
can be quickly reallocated among Movers, allowing quick restoration of service. Going 
one step further, SAN technology enables disks and tape drives to be connected to pairs 
of HPSS Movers, allowing the use of fault-tolerant software such as IBM’s High 
Availability Cluster Multi-Processing (HACMP). All of these capabilities are available 
with today’s HPSS just as they are available with other storage software, because SAN 
technology presents computers with the image of local disks or tape drives. Our goal is to 
exploit SAN technology as the high performance network connecting both clients and 
devices. This allows clients direct access to SAN devices, saving network store and 
forwards and data copies. Above the SAN level of device sharing and reconfiguration, 
HPSS adds the capabilities of a hierarchical, shared file system. 
 
Having looked at how HPSS sites use SAN technology today to aid system 
administration and recovery from component failures, we now show how SAN capability 
will be exploited in future releases of HPSS.  
 
7. SAN-enabled Movers and Clients 
We have set a course to enable client applications to read and write data directly over a 
SAN, bypassing the existing store and forward character of TCP/IP networks when used 
with SCSI devices. In doing so, we will also enable HPSS to read and write data directly 
over a SAN for internal purposes such as migration and staging. The changes create 
“SAN-enabled Movers” and “SAN-enabled Clients.”  
 
We are currently evaluating a prototype that is an extension of the IPI3 I/O redirection 
mechanism for disk access described earlier in the paper. Devices are assigned to a single 
Mover as is currently done in HPSS. In the case of I/O between a SAN-attached disk 
device and a SAN-attached client, the SAN-enabled disk Mover redirects its I/O 
descriptor (an internal HPSS data structure) to the client, which in turn can perform the 
I/O operation directly with the SAN disk. The “client” in this case could be either a true 
HPSS Client (i.e. a user) or another Mover such as a tape Mover. No data passes through 
the disk Mover, as it is only used for the redirection control. Only a single disk Mover or 
a small number of disk Movers would be required, reducing cost. This design is called 
“I/O Redirect Movers.” 
 
We are also studying a design that allows HPSS to dynamically map a device to the a 
Mover for a data transfer. This design is called “Multiple Dynamic Movers.” Currently 
devices are administratively assigned to specific Movers. With Multiple Dynamic Mover 
capability, it will be possible to configure SAN-enabled Movers and Clients that are 
equivalent to the I/O Redirect Mover capability in data transfer functionality and offer 
dynamic device to Mover mapping, which may be useful for dynamic failure recovery 
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and load balancing. In the case of Clients, this would be accomplished by combining a 
SAN-Enabled Mover with a conventional Client API library.  
 
We will have a prototype of SAN-enabled Movers and Clients running in an HPSS 
testbed in the spring of 2002. Experience with that prototype and the other design and 
requirements studies under way will lead to our final implementation choices. The 
selection of the “I/O Redirect Mover” or the “Multiple Dynamic Mover” will be made by 
mid year 2002 so as to deliver a SAN-enabled product in 2003. The discussion that 
follows applies to either approach. 
 
For most systems configured for SAN enablement, fewer Movers will be required. Data 
transfer across a LAN is avoided. However, SAN enablement of Movers and Clients will 
be optional, and existing LAN-based capabilities will be fully supported. Sites that elect 
to use SAN-enabled Movers and Clients will benefit from fewer “hops” between HPSS-
managed disk and the user and between disk and tape. On the other hand, the stronger 
inherent security for shared storage that is afforded by the current HPSS Mover and LAN 
approaches will in general (independent of HPSS) motivate some sites to use SAN 
enablement only for HPSS internal functions of migration and staging, while retaining 
LAN-based client functions. This will be discussed in more detail in Section 10. 
 
Now we look at the ways SAN-enabled Movers and Clients can be exploited. These ways 
are (1) LAN-less and Server-less data movement for HSM stage and migrate and (2) 
LAN-less data movement between clients and storage devices directly over the SAN. 
 
8. LAN-less and Server-less Data Movement for HSM Stage and Migrate 
The HSM stage/migrate function moves data between levels in the storage hierarchy, 
usually consisting of disk and tape. In the current HPSS architecture, each storage device 
is assigned to a single data Mover. Data that is being staged to disk or migrated to tape is 
transferred between the respective Mover machines over a  high-speed TCP/IP network.  
 
SAN architecture is capable of making storage devices directly accessible to all Mover 
platforms connected to the SAN. With SAN-enabled Mover approaches outlined above, 
one Mover computer (which may run multiple Mover processes) will have the I/O 
descriptors for both source and sink ends of the transfer. Thus it will have the capability 
to migrate data from disk to tape or to stage data from tape to disk without moving data 
across a LAN. Eliminating a LAN transfer should allow fewer Mover computers and 
fewer LAN data connections. This is shown in Figure 5.  
 
Going one step further, when devices and clients are directly attached to a SAN, the 
potential exists for the actual data movement to take place without going through a 
Mover by using the SCSI third-party copy command from a third-party agent. This 
capability is used in some tape backup systems today, and the same capabilities can be 
applied to hierarchical storage. Since the HPSS Mover software in Figure 5 has the 
addresses of both the disk and tape drive (source and sink), it can be extended to provide 
this third-party SCSI copy service or use another SAN agent specializing in this service. 
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We expect to consider this Server-less data transfer capability in the near future and see it 
as a logical extension to the LAN-less SAN enablement described above. 
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Figure 5: LAN-less Stage/migration between disk and tape using SAN-enabled 
Movers  

 
9. LAN-less Data Movement between Clients and HPSS Storage Devices 
The high performance user interfaces of HPSS are the Client API library, which is a 
superset of the Unix standard I/O read and write services augmented for parallel I/O, and 
Parallel FTP (PFTP), which is similarly a superset of Unix ftp. The Client API library, 
has code to support the Mover protocol and communicates with HPSS Movers using 
TCP/IP if the client and Mover are on different machines, or by an internal transfer 
mechanism if they are in the same computer.  
 
SAN-enabled HPSS Clients will be able to access SAN-attached HPSS disks directly, 
and potentially also SAN-attached tapes. This can be done because the Client will be 
passed an I/O descriptor that describes the I/O operation to be performed. This is shown 
in Figure 6. The benefit of a SAN-enabled Client API library on a client machine must be 
weighed against the security exposure. This is discussed in the next section. 
 
10. Security Considerations for Access to Storage: SAN versus LAN  
We will now revisit security issues. Our assumption is that with today’s generally 
available Unix-based technologies, a person who acquires root access, whether with 
authorization or not, can read and write any disk or tape that is configured as a local 
device. This includes SAN-attached devices. This is a well-known vulnerability of SANs, 
and it is the basic reason for zoning. The problem is that zoning and sharing data are 
inherently at odds with each other. In an environment where access to a computer cannot 
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be limited by physical means, then the information on shared devices is vulnerable to a 
rogue user with root access on any SAN-attached machine zoned for access to the shared 
data. (Zoning is a SAN capability that allows users to create multiple logical subsets of 
devices within a physical SAN as mentioned earlier. Access to devices within that zone is 
restricted to the members of the zone.) For this reason and until improved technology 
such as secure object-based devices [7] are available, server-facilitated access is currently 
the safest course for a file or storage system shared across computers.  
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Figure 6: With SAN-enabled Movers and Clients, HPSS has LAN-less access to disk 

and/or tape storage. 
 
Most large computer centers contain computer systems that are not likely to be 
compromised, usually because access is limited. For systems where access can be limited 
and trust exists, then sharing files across computers using SAN devices may present an 
acceptable level of risk. 
 
Figure 7 shows appropriate use of current SAN and LAN capabilities for an example 
limited-access computer system and for an example open-access computer system. The 
configurations shown are typical of large IBM SP computers, large Linux clusters, and 
similar large-scale distributed architectures. By “limited access” we mean a computer 
system where access is physically controlled such that rogue users are very unlikely to 
gain access to the I/O client nodes, while an “open” system would be less secure and the 
I/O client nodes would be more vulnerable. For simplicity only the data paths are shown 
in Figure 7. Control would typically be over a fast Ethernet. 
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Each computer system in the example of Figure 7 has a local file system such as the IBM 
General Parallel File System (GPFS). GPFS is the principal file system for the IBM SP 
and is also used with Linux clusters. GPFS as configured here would provide access to 
files across nodes within each computer system but not across computer systems. 
Therefore GPFS data accessible to one system would be on disk zones not visible to the 
other computer system. This is the classic use of SAN zoning to protect each computer 
system’s local file system. Use of SAN zoning to allocate storage to HPSS and local file 
systems is the heart of the administrative benefit of SANs.  
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HPSS, on the other hand, is typically configured such that files are globally visible across 
all HPSS client computers (although HPSS clients can be configured with limited access 
to particular classes of HPSS files). HPSS files in our example are in zones that are 
visible to all HPSS Client nodes, both in the Limited Access System cluster and in the 
Open cluster. As a result, data transfers from HPSS to nodes in the Limited Access 
System cluster will occur over the SAN and no external LAN is required for data transfer. 
SAN terminology would be “LAN-less” or “LAN-free” transfer.  
 
For a system with a reasonably small number of compute nodes in the cluster it would be 
possible to put a SAN-enabled Client on each compute node, thereby eliminating the 
need to transfer data across the backbone network of the cluster. However for a large 
cluster or SP, this would require an equally large SAN switch. It would also open the 
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HPSS data zones to the previously described vulnerability of SANs to rogue users with 
root access to the compute nodes. This vulnerability is not a limitation of HPSS but is due 
to the lack of security mechanisms to protect shared data in today’s SANs. It would 
therefore be recommended that in most situations, dedicated nodes be used for the HPSS 
Clients. At LLNL, for example, the normal practice is to use agents to transfer data 
between HPSS and GPFS, which serves as the local file system. Only the agents are 
enabled to use the HPSS Client API and PFTP. Residing on SP nodes dedicated to I/O, 
these agents and the client API are protected from unauthorized access and hence the 
associated SAN zones are protected from unauthorized use. 
 
The Open Access System, which is the less trusted of the two systems, is configured to 
access HPSS files only through the LAN, using conventional capabilities of the HPSS 
Client without SAN enablement. This provides the maximum protection for HPSS data. 
 
11. Lessons Learned 
The HPSS collaboration and the earlier NSL collaboration have dealt with the problems 
of scalable, network-centered storage for over a decade. Our charter is to provide storage 
software for large, demanding applications such as those of the Department of Energy 
labs that sponsor HPSS. Other large applications where HPSS has been deployed include 
supercomputer centers, weather, high-energy physics, and defense. Our “lessons learned” 
apply both to this high end of hierarchical storage and archiving and we believe to SAN 
file systems generally. Our experience has led us to a blend of LAN-based and SAN-
based technologies with the overarching requirements of scalability, high data rates, 
shared access to files, security, high availability, and manageability.  
 
Based on our experience with HPSS and our forty plus installations we have found that: 
• High data rates and scalability are supported by a network-centered architecture, but 

not tied to either LAN or SAN. 
• The lightweight HPSS Mover, which is based on a concept from the IEEE Mass 

Storage Reference Model Version 5, is a useful tool for scalability and facilitates 
simple evolution toward full support for SAN file system concepts. 

• LAN-based and SAN-based technologies are complementary and can be mixed. 
• Data rates are limited by the hardware configuration (including the network and the 

choice and number of devices) and not by HPSS software. 
• Due to the lack of an adequate SAN security mechanism, shared access to data is best 

managed in a server-based environment for situations requiring protection from a 
rogue users who might obtain root access.  

• Manageability and high availability are enhanced by SAN capabilities.  
• Separation of data network paths from control network paths enhances security. 
 
We find that the blending of LAN and SAN capabilities of current and future releases of 
HPSS effectively addresses scalability, high data rates, shared access to files, security, 
availability, and manageability ways that are useful to high-performance data-intensive 
computing. We believe that the lessons of NSL and HPSS have applicability to others in 
our industry exploring or developing SAN based file and storage systems, as the current 
explosion of electronic data goes on around us. 
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Abstract 
 
The purpose of this paper is to demonstrate that alternative solutions to current methods 
exist for network storage. We would like to introduce one such alternative, a new 
protocol that we call HyperSCSI. This protocol is used for the transmission of Small 
Computer Systems Interface (SCSI) family of protocols across a network and multi-
technology device support. In this paper, we will outline some of the key features and 
basic technical details of HyperSCSI. We have also developed several fully functioning 
disk array prototypes using a variety of hardware and storage devices as well as 
conducted benchmarks and performance tests on this. A performance comparison 
between this new protocol and iSCSI and NFS is also included here.  
 
1. The Problem 
 
Research has been ongoing for ways to transport data over networks for storage 
applications for quite some years. While we pursued efforts in developing network 
storage technologies, we came across the following issues and concerns. 
 
• High cost of Fibre Channel SANs – Implementing and managing FC-based SANs is 

quite expensive. Even if hardware costs were to come down (and we expect them to 
do so), ultimately the “hidden” costs of systems, infrastructure, manpower and 
software implementation and maintenance is still very high. 

• TCP/IP SAN performance is still not good enough without hardware acceleration – 
TCP/IP is inherently slow compared to FC-based storage technologies. Special 
hardware for TCP/IP represents higher costs and a more difficult upgrade path for 
users. 

• FC-based SANs cannot do Storage Wide-Area Networks – FC is an inherently local 
communications technology, and if one needs to go wide-area, the best method is to 
use the ever present IP due to its wide-spread availability. Ongoing efforts such as 
FCIP, iFCP and iSCSI are in line with this idea. 

• Interoperability is weak at times – Vendors are also often stuck on the interoperability 
of various storage products and systems. The fundamental issue is that vendors need 
to differentiate their solutions in order to compete. However, this often results in 
interoperability issues or worse, vendor lock-in for customers. 
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• Security is lacking – Normal TCP/IP and Fibre Channel do not provide serious 
security for data transport. FC does have LUN Masking, but this is mostly a function 
of the FC switch, not the storage device itself. IPsec does provide security to IP-based 
applications, but adds yet another layer of complexity to an already difficult solution. 

• Inability of existing storage technologies to apply to new areas – Existing network 
storage methods do not take non-traditional applications and areas into account. An 
example of this is in home and personal network storage and using simple infra-red, 
Bluetooth or wireless LAN for small data access or transport. 

• Difficulties in scaling – Existing systems scale upwards through new higher 
bandwidth standards. This is often slow due to the standards process. Furthermore, 
the scaling of capacity is difficult due to the continuous need to build and implement 
larger and larger disk systems that are generally not modular enough. 

 
Based on this background, we set about designing, developing and testing a new network 
storage protocol that we hope will address these and other network storage issues. We 
would like to present some of the results from our research and development efforts that 
began in June 2000 in this paper. 
 
2. Existing Solutions 
 
Recent efforts in network storage have expanded to include development of alternatives 
to pure Fibre Channel as the primary method for network storage. These efforts include 
iSCSI, FCIP, SST and many others. Below are descriptions of a few of these efforts.  
 
2.1. Fibre Channel over TCP/IP (FCIP) 
Fibre Channel Over TCP/IP (FCIP) describes mechanisms that allow the interconnection 
of islands of Fibre Channel storage area networks over IP-based networks to form a 
unified storage area network in a single Fibre Channel fabric. FCIP relies on IP-based 
network services to provide the connectivity between the storage area network islands 
over local area networks, metropolitan area networks, or wide area networks [1]. What 
this means is that FCIP is designed to encapsulate Fibre Channel over a TCP/IP-based 
network for the purposes of connecting dispersed FC-based SANs. 
 
2.2. iSCSI 
The iSCSI Internet Draft describes a transport protocol for SCSI that operates on top of 
TCP [2]. iSCSI enables the use of SCSI devices over a TCP/IP-based infrastructure. 
Other areas considered include Naming and Discovery, Boot and Security. It is important 
to note that iSCSI is the only protocol currently in the process of standardisation that 
allows for the construction of native end-to-end Ethernet SANs [3]. 
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2.3. Internet Fibre Channel (iFCP) 
iFCP specifies an architecture and gateway-to-gateway protocol for the implementation 
of Fibre Channel fabric functionality on a network in which TCP/IP switching and 
routing elements replace Fibre Channel components. The protocol enables the attachment 
of existing Fibre Channel storage products to an IP network by supporting the fabric 
services required by such devices [4]. The purpose here seems quite clear, that is to 
implement Fibre Channel fabric architectures over a TCP/IP-based network, thus 
allowing FC devices to connect and run FC natively over a TCP/IP-based infrastructure. 
 
2.4. Metro FCP (mFCP) 
mFCP is a UDP-based implementation of the iFCP over metro- and local-scale IP 
networks. These networks are provisioned to have latency, reliability, and performance 
levels comparable to that of a Fibre Channel network. Storage devices use the Fibre 
Channel SCSI mapping in FCP for data transport and error recovery. mFCP leverages 
these existing mechanisms to facilitate high-performance interconnection of Fibre 
Channel- based storage devices over suitably provisioned IP networks. As in the case of 
iFCP, Fibre Channel frames may be transported natively over such a network without 
Fibre Channel switching and routing elements [5]. 
 
2.5. Internet Storage Name Service (iSNS) 
iSNS provides a generic framework for the discovery and management of iSCSI and 
Fibre Channel (FCP) storage devices in an enterprise-scale IP storage network. iSNS is 
an application that stores iSCSI and FC device attributes and monitors their availability 
and reachability in an integrated IP storage network. Due to its role as a consolidated 
information repository, iSNS provides for more efficient and scalable management of 
storage devices in an IP network [6]. iSNS is meant to be used with iSCSI, FCIP, iFCP 
and such protocols for the hosts or servers to locate and use storage devices over a large 
network infrastructure such as the Internet. 
 
2.6. SCSI on Scheduled Transfer Protocol (SST) 
The SCSI on STP standard defines a transport protocol within the SCSI family of 
standards. The physical interconnects to which the SST protocol may attach are not 
defined within this standard, but rather, are any interconnects or other protocols on which 
the basic ST protocol may operate [7]. SST defines a mapping to carry SCSI traffic on 
top of an STP-based infrastructure. 
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2.7. Basic Technologies 
The above technologies are built on top of a basic set of storage technologies. There are 
two such basic command sets today, ATA/IDE and SCSI. Based on these two command 
sets, other derivative technologies have been developed. See Table 1 for a pictorial 
representation of these technologies. 
 
Base Command Set ATA/IDE SCSI 

Derivative / 
New Developments 

ATA 133 
Serial ATA 

SCSI-320 
Universal Serial Bus 
IEEE 1394 “FireWire” 
Fibre Channel 
SSA 

Network Storage  
Developments  

iSCSI 
iFCP 
FCIP 
SST 

Table 1: Storage Technologies 
At this point, we turn our attention to our development efforts of the HyperSCSI protocol. 
Further in this paper, we will present a few ideas for thought regarding HyperSCSI and 
various other technologies. 
 
3. The Approach 
 
The first thing we decided on was to standardise on using the Small Computer Systems 
Interface (SCSI). It is the predominant mechanism for various storage and even non-
storage devices. The question then turned quickly to how we could make SCSI “network-
enabled”. This gave rise to our idea of “HyperSCSI”. 
 
We found that the requirements of local network storage (SAN) and wide-area network 
storage (SWAN) are quite different. As such, we provided the capability to spilt 
HyperSCSI protocol into multiple modes of operation. Two such modes are currently 
being developed, one for local access, Local HyperSCSI over Ethernet (HS/eth), and the 
other for wide-area connectivity, Wide-Area HyperSCSI over IP (HS/IP). The basic 
protocol structure is essentially the same, thus allowing devices to speak local or wide-
area storage seamlessly. This has allowed us to adopt IP-based networking technologies 
for wide-area applications where it is needed but bypassing IP entirely and putting the 
protocol directly onto Ethernet itself for optimum local area communications. This model 
also allows us to eventually develop HyperSCSI for other technologies, such as 
Asynchronous Transfer Mode (ATM) for high speed Telco / ISP environments and 
Wireless LAN for home or personal network storage. 
 
Furthermore, since we are designing a low-level protocol, some of the intelligence or 
command and control functions can be passed on to higher layers or the clients to adapt 
and handle. This allows us to design a protocol that is lightweight and efficient, while 
leveraging the intelligence and capabilities of both the storage system and host machine 
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to mutual benefit. For example, we allow device, security and compression options as 
well as storage virtualisation technologies to be implemented on either the storage 
system, host machine or both as the needs arise. In addition, packetisation and 
virtualisation options of HyperSCSI allow us to implement N-channel communications 
technologies in order to use “scale-out” methods of bandwidth and capacity increases 
with fault tolerance and reliability. Figure 1 shows a Local HyperSCSI packet on 
Ethernet (HS/eth). A wide-area HyperSCSI (HS/IP) packet is essentially the same, but 
built on IP instead of directly on the Ethernet.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: HyperSCSI Packet 
 
Finally, more advanced functions and capabilities were built into the HyperSCSI protocol 
to support other requirements like dynamic management, dynamic flow control and in-
band management capabilities. Manufacturers, system integrators and technology 
companies are not left out in the cold either. To enable the protocol to be interoperable, 
and yet be able to support vendor-specific or implementation-specific functions, a special 
set of dynamically negotiated device options has been designed into the protocol. These 
options can be negotiated at connect time and depending on the configuration of the 
clients and servers, be enforced, supported or ignored. Thus, HyperSCSI can provide a 
minimum level of connectivity for interoperability operations and while supporting 
advanced vendor-specific or implementation-specific functions. Our initial encryption 
methods demonstrate this function in action. Other possible device specific options 
include read-only access, removable media locking and data compression. 
 
 
 
 
 
 
 
 
 
 
 
 
 

DA            SA Ethernet EtherType HyperSCSI PDU CRC 

HS Header HyperSCSI Data
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HyperSCSI
Packet
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4. HyperSCSI Operation 
 
The HyperSCSI protocol comprises of various packet structures. These structures are 
categorised by classes and then by specific types. Packets of a specific class and type may 
also have more than one function depending on the context of the communication. These 
packets are responsible for transmitting the SCSI data and commands as well as 
managing the connection and communication channel. Table 2 illustrates some of the 
packets in the HyperSCSI protocol. 
 
HyperSCSI Packet Description 

HyperSCSI Command Block Encapsulation Class 
HCBE_REQUEST HyperSCSI command block encapsulation request 
HCBE_REPLY HyperSCSI command block encapsulation reply 

HyperSCSI Connection Control Class 
HCC_DEVICE_DISCOV
ERY 

Client issues this packet to discover storage devices on the 
network 

HCC_ADN_REQUEST Authentication challenge and device operation negotiation 
request 

HCC_ADN_REPLY Authentication and device operation negotiation reply 
HCC_DISCONNECT  Termination of HyperSCSI connection 

HyperSCSI Flow Control Class 
FC_ACK_SNR Flow control set-up and acknowledgement request 
FC_ACK_REPLY Acknowledge reply 

Table 2: HyperSCSI Operations 
 
5. Typical HyperSCSI Connection Flow Sequence 
 
Figure 2 illustrates a typical sequence of the communication stages between a client and 
server using the HyperSCSI protocol. The various stages of the connection flow sequence 
are described below. 
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Figure 2: Typical HyperSCSI Connection Flow Sequence 
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5.1. Connection Setup 
The HyperSCSI connection setup is a three-step handshaking procedure between a 
HyperSCSI client and server pair. Typically, in a storage network, the host machine 
(HyperSCSI client) is responsible for locating and initiating connections to storage 
devices (HyperSCSI servers). During this process, the HyperSCSI client issues a 
HCC_DEVICE_DISCOVERY via Ethernet broadcast or IP packet, to locate devices on 
the network. For IP-based situations, neither broadcast nor multicast methods are used. 
Instead, a client must specify an IP address (or DNS name) and a 
HCC_DEVICE_DISCOVERY packet is sent over IP directly to the server. Further 
information about device discovery is covered in section 6.2. Once the HyperSCSI server 
receives this packet, it checks the client address for authentication purposes and transmits 
the HCC_ADN_REQUEST packet back to the HyperSCSI client. In order for the 
HyperSCSI client to establish a connection with the HyperSCSI server, it must then send 
the correct response through a HCC_ADN_REPLY command and add the ID numbers of 
the devices that it has access to into its own registry. If the server successfully 
authenticates the HCC_ADN_REPLY, the connection is accepted and the HyperSCSI 
client can now send commands to the server. Within the HCC_ADN request and reply 
method, authentication challenges, encryption key exchanges, device specific option 
negotiations and other information supporting N-channel communications such as 
server/client IDs and network addresses are also provided and exchanged.  
 
5.2. Flow Control and ACK Window Size Setup 
An ACK mechanism has been adopted to support flow control of data between an 
HyperSCSI client and server pair. The ACK window size refers to the number of packets 
that the transmitter may continuously send before waiting for an acknowledgement. This 
window size must be negotiated and agreed upon before data flow can take place and is 
set by the requestor through an FC_ACK_SNR command. This packet is issued as a 
separate message and typically, the server will be the one to issue this command so that 
the server has the ability to balance loads or priorities across multiple clients, although 
this does not mean that the client may not issue one either. Once the FC_ACK_SNR has 
been received, the new status will be acknowledged to the requestor with an 
FC_ACK_REPLY. If the requestor receives the acknowledgement, it assumed that the 
window size is accepted and packet transmission using the new window size can begin. 
The ACK window size can be set based on traffic loads, or buffer capacities and can be 
set at start-up or changed dynamically during run time. This allows for different window 
sizes to be dynamically set by clients and servers to fit changing performance, reliability 
or QoS requirements. For example, under bad network environments, windows sizes can 
be reduced, while under optimum situations, window sizes can be increased for better 
performance. However, we are still studying algorithms for the detection of network 
congestion and updating of the window size during run time. The basic protocol supports 
this capability and we will include this portion when it is complete. Transmission 
windows used here are neither fixed nor sliding in nature, but rather utilises a moving 
window scheme similar to credit-based schemes used in Fibre Channel, but measured in 
windows rather than individual packets. In addition, the FC_ACK_REPLY is also used to 
acknowledge the correct reception of a window to the requestor and synchronises the data 
flow between an HyperSCSI client and server pair. In this case, it functions as an 
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indicator of the receiver status for normal HyperSCSI data transmission. If the transmitter 
does not receive the correct FC_ACK_REPLY packet within a timeout period, it will re-
transmit all the packets in the window in question again. Another retransmission scheme 
supported is by using the FC_ACK_SNR to query the receiver’s status. The transmitter 
can then use the FC_ACK_REPLY results to re-calculate the next packet to be 
transmitted. With these two schemes, re-transmits can be conducted selectively or by 
ACK windows, thus giving users a high level of flexibility in controlling the flow of data 
and commands. 
 
5.3. HyperSCSI Data Transmission 
When there is a SCSI request from the local OS SCSI upper layer of the host machine, 
the HyperSCSI client software is responsible for converting the OS-specific SCSI 
command block together with any relevant data (as in a write command) into a platform 
independent HyperSCSI Command Block (HCB). The client then encapsulates and 
fragments the HCB into one or more HCBE_REQUEST packets that it sends to the 
HyperSCSI server. SCSI command blocks and user data will therefore be transmitted 
together in the same packet. The HyperSCSI server receives the data stream, re-
assembles the HyperSCSI command block and relevant user data, converts it back to an 
OS-specific SCSI command block and passes it to the relevant hardware for execution. 
When the result of this SCSI request is ready, the HyperSCSI server will send the result 
together with the requested data back to HyperSCSI client by issuing the HCBE_REPLY 
packet stream in a similar manner as the request. The HyperSCSI client reassembles the 
HyperSCSI command block and converts it back to a OS-specific SCSI command block 
before passing it on to the local OS SCSI upper layer. During this transmission, flow 
control mechanisms are in effect through the use of FC_ACK_REPLY commands as 
described in section 5.2. 
 
5.4. Dynamic Management 
During a HyperSCSI connection, the HyperSCSI server will regularly (timer-based) issue 
a HCC_ADN_REQUEST command for three purposes, re-authentication of clients and 
key-exchange for security, re-negotiation of device options (if permitted), and as a form 
of “keep-alive”. Through this method, servers not only poll the client’s status, but also 
check its identity. Furthermore, if HyperSCSI encryption options are turned on for data 
transmission, the HCC_ADN_REQUEST and HCC_ADN_REPLY uses an authenticated 
exchange mechanism to update and change encryption keys. This scheme also allows a 
device’s options to be modified dynamically. For example, a device which does not have 
encryption enabled may turn it on during this time so that the communication will be 
secured from this point onwards. To enable such remote management functions, an 
encrypted Management Command Stream is used to transfer management commands 
from a client to a server or vice-versa. This MCS also allows adding or removing clients, 
requesting the change of device options, changing access passwords and device access 
permissions. The MCS is implemented within a valid HyperSCSI connection, thus only 
authenticated HyperSCSI clients and servers can use this in-band management 
mechanism. 
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5.5. Connection Termination 
The HyperSCSI client can close a connection by sending an HCC_DISCONNECT 
command to the HyperSCSI server. The server will then remove this client from its 
connection list and close the connection. Servers do not need to acknowledge disconnect 
requests from clients because SCSI connections are host-target based. Unlike TCP/IP 
connections, which are full-duplex and can be closed by both clients and servers, SCSI 
connections can only be terminated (gracefully) by clients. If a server were to terminate a 
connection, it implies that service has been lost (or a hard disk has crashed). Servers do 
not keep connection information forever, and will drop relevant connections if “keep-
alives” (as outlined in section 5.4) to a particular client should fail for some reason. 
Through the use of hashing, encryption and security methods (see section 6.3), 
connections are protected from denial of service attacks from hackers arbitrarily using the 
HCC_DISCONNECT command. 
 
6. Feature Comparison 
 
There are many points to consider when making comparisons of HyperSCSI features to 
other technologies. In the area for security for example, HyperSCSI makes use of 
sequence numbers, hashing, SCSI command identifiers, digital keys and other 
mechanisms to secure a connection, similar in some areas to IP and SCSI. A point to note 
has been that where possible, we have tried to adapt good ideas and mechanisms from 
other technologies for use in HyperSCSI. A good reference is the six manipulation 
functions used in any data transport protocol [8]. Thus, while differences exist, 
similarities will definitely show up as well in any comparison with HyperSCSI. Presented 
in Figure 3 are some ideas for consideration. 
 
 
 
 
 
 
 
 
 
 

Figure 3: Protocol Stack Comparison 
 
6.1. Storage Device Management 
As it turns out, this is a key aspect of network storage that is often neglected. Proprietary 
enterprise management software or dedicated SAN management software from vendors 
or switch manufacturers is often required to properly manage the storage devices. Fibre 
Channel devices, switches and arrays often have an additional Ethernet port and IP 
address for access from the management software. HyperSCSI provides an in-band 
management mechanism that allows properly authenticated (and permitted) clients and 
servers to manage each other’s settings and properties. Some device and management 
options can even be modified and updated dynamically during a connection. 

SCSI Protocol

Parallel Bus FCP iSCSI 

HS / eth 

HyperSCSI 

TCP / IP HS / IP Fibre Channel
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6.2. Device Discovery Mechanisms 
To identify and locate storage devices, Fibre Channel has World Wide Name (WWN) 
while iSCSI/FCIP/iFCP use iSNS. Such mechanisms are complex and add another 
hindrance to achieving ease of use and even plug-and-play networking. For this purpose, 
HS/eth uses standard a broadcast device discovery mechanism to dynamically locate 
targets on the network. If a server is configured to allow a particular client to attach, it 
will respond appropriately, else the discovery request is ignored. Thus the only 
configuration users have to be concerned about is granting permissions, rather than 
setting up complex name servers of some type. This is particularly useful in a plug-and-
play wireless personal storage network environment. HS/IP on the other hand, leverage 
standard DNS mechanisms to “locate” a server across the network. We do not endorse 
the idea of “broadcast / multicast to find out who’s out there on the Internet” as a means 
to locating storage resources. Storage being a key and critical resource should be 
managed as securely as possible, especially if it is on a public or private IP-based 
network. If protocols can be routed, physical security of the storage network is less 
assured. As such, administrators should know before hand the IP or DNS address of the 
client and server, configure them accordingly and not have such information 
“discovered” for security reasons. This also means that there is no single point of failure 
like having iSNS servers or requiring expensive switches with additional intelligence 
built-in. HyperSCSI clients will then attempt to connect to the server address given to it, 
and no other. The only configuration that users need to worry about in the end is granting 
permissions. 
 
6.3. Security 
All three TCP/IP based encapsulation methods iSCSI, iFCP and FCIP provides for and 
requires the use of IPsec for securing the TCP/IP connection. Certainly, this is a step 
forward when considering that Fibre Channel’s main security mechanism is LUN 
masking which is implemented mostly on the switch. However, using IPsec implies 
securing the entire connection. This is different from the more flexible LUN masking 
method that FC uses to allow the user to secure individual LUNs as the case may be. 
HyperSCSI thus supports security options to be specified by individual devices (or 
LUNs) instead of at the connection level. Of course, iSCSI for example, only supports 
one LUN per connection, while HyperSCSI can have multiple devices in a single 
connection, as outlined in section 6.4. It should also be noted that like Fibre Channel, 
HS/eth (which does not use IP at all and is not routable) would require physical access to 
the network in order to hack it. HyperSCSI also allows for security to be modularised into 
different levels of requirements such as hashing, encryption or none at all, thereby giving 
even more options to secure (or not) the device and/or the connection. 
 
6.4. Multiple Device Access 
iSCSI uses one or more TCP connections to make up a single session and requires that 
across all connections within a session, an initiator sees only one “target image”. All 
target identifying elements, like LUNs, are the same [9]. While this makes sense in a pure 
SCSI environment, where a single host bus adapter would see a single target to have one 
“target image”, this may not be true in a network storage environment where usually disk 
arrays of one or more targets may be “exported” to the initiator. HyperSCSI on the other 
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hand allows a single connection to have access to as many SCSI devices (or LUNs) as 
supported by both the initiator and target. This single connection can then be established 
as a virtual channel over multiple physical links to form a redundant trunk. Devices that 
may require multiple LUN access includes optical jukeboxes and tape libraries. 
 
6.5. Optimising Performance 
One of the most controversial aspects of performance for network storage are the 
overheads of TCP/IP. Industry analysts have noted that the TCP/IP stack is very CPU 
intensive and without complex optimisation techniques like hardware accelerators, 
interrupt coalescing, checksum offloading, and so on [10], the only practical application 
for iSCSI is to extend current Fibre Channel SAN-to-LAN connectivity into the realm of 
SAN-to-MAN/WAN connectivity [11]. If every implementation were to require TCP/IP 
implemented in hardware, it would be no different than requiring all devices to have 
Fibre Channel hardware built-in. HyperSCSI can bypass TCP/IP entirely to build a 
storage network similar to (and capable of replacing) Fibre Channel architectures, but 
using plain old Ethernet instead. For wide area implementations, HyperSCSI does in fact 
also support the use of IP-based infrastructure for building Storage Wide-Area Networks 
through HS/IP, a strategy which is no different from Fibre Channel. It should also be 
noted that while HS/eth reduces overheads partly by eliminating certain checksums (ie. 
header checksum), IPv6 also does away with the header checksum. IPv6 designers felt 
that the risk was acceptable given that data link and transport layers check for errors [12]. 
Another key point of HyperSCSI is its reliance on state tables so that information about a 
connection does not have to be retransmitted over and over again. Such information 
includes SCSI host/target information, device options and HyperSCSI sequence numbers. 
This is also similar in idea to STP’s architecture of setting up the receiving buffer and 
related information before transmitting data [13]. This is also a security benefit since the 
capture of a single packet is unlikely to reveal much information about the connection 
itself. For HS/IP, only one IP port is required, since each client can access multiple 
devices through a single connection, unlike iSCSI (see section 6.4). 
 
6.6. Flow Control Issues 
Fibre Channel is often touted as the best solution for network storage due to its high 
speed packetised but dedicated channel for storage. iSCSI on the other hand relies upon 
TCP/IP for flow control and packet transmission and can leverage TCP/IP’s sliding 
windows as a counter to the idea of packetisation being less efficient compared to 
dedicated channels. To provide the best of both worlds, HyperSCSI adopts a moving 
window mechanism but makes the window size dynamic. A balance is provided in that 
the window size does not fluctuate like TCP/IP’s sliding windows, but can and does 
change dynamically in the middle of a connection. Since this window size is dynamically 
controlled by clients and servers, algorithms for determining the window size can be 
adopted to find the optimal window size during run-time, thus adapting to network 
congestion. This is particularly evident in HS/eth implementations. HS/IP of course 
leverages standard IP-based methods for flow-control issues. In addition, retransmission 
can be implemented either using a selected retransmission scheme or a simpler window 
retransmit scheme. This can be decided based on the implementation environment, thus 
giving users a wide degree of flexibility and performance tuning options. 
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6.7. Simplicity, Interoperability and Diversity 
HyperSCSI is designed from the ground up to be simpler for users to implement and yet 
capable of achieving interoperability without sacrificing diversity. For this purpose, 
negotiable device options allow for vendor-specific or implementation-specific features 
to be supported. If different vendor devices with different supported device options were 
to try to connect to each other, the worst case is expected to be a basic connection with no 
additional features or functions. When used in conjunction with the varied SCSI-3 
command set and the Management Command Stream, this becomes quite a powerful 
value-added option for vendors and users alike. 
 
7. Development Progress 
 
We have implemented and tested HyperSCSI under various conditions over Fast Ethernet 
and Gigabit Ethernet. The results so far have proven to be most encouraging. Today, 
HyperSCSI on Gigabit Ethernet achieves a quick 96% of the local physical disk 
performance compared to iSCSI’s 82% for block level access. The results are even better 
when considering file system level tests. Using a straightforward file copy test, 
HyperSCSI can reach 88% of the local physical disk performance, iSCSI managed 43% 
while NFS only succeeded to match 39%. Not only that, it can be seen that HyperSCSI 
provides a more reliable and predictable performance level similar to that of the local 
physical disk than iSCSI or NFS and is less dependent on caching to achieve 
performance. One might wonder why iSCSI performance is not as good as expected. 
Seeing how iSCSI performance seems to closely track NFS performance, we hypothesise 
that the TCP/IP overhead is the differentiating factor between iSCSI and HyperSCSI 
performance. The following charts highlight some of the performance measurements that 
we have conducted. 
 
The results illustrated in Figure 4 represent results from five different tests, two of which 
were raw block level reads (hdparm and dd) and the other three represent data access 
above the file system level. These tests were done on the same hardware and the same OS 
for all three technologies and both the client and server. We used two AMD Athlon 
1.2GHz SMP machines with 32-bit 33MHz PCI busses, 266MHz 256MB DDR RAM 
running RedHat Linux 7.1 using the standard Linux kernel version 2.4.16, one of which 
was the client and the other was the server. Both machines had 3Com 3C985B-SX 
Gigabit Ethernet NICs, connected over a cross connect fibre-optic cable with jumbo 
frames, and the server used an Adaptec 39160 U160 SCSI controller. The server exported 
8 IBM UltraStar U160 9.1GB 10k RPM drives configured in RAID 0. For the tests using 
a file system, Linux Ext2 was used as the file system. We used NFS version 2 over UDP 
from the RedHat Linux RPM version 0.3.1-5. The iSCSI version we used was version 6 
from Intel, while the HyperSCSI version was 110-011226. The destination for the cp test 
was /dev/null while the Iozone version used was 3.71. We would like to draw attention, 
not to the absolute numbers of MB/s, but rather to the performance comparisons between 
iSCSI, NFS and HyperSCSI. 
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Figure 4: HyperSCSI Block and File Access Performance Comparison 
 
Feature-wise, the HyperSCSI reference implementation already supports standard SCSI 
hard drives, IDE hard drives, software RAID / virtualised drives, optical disks (like 
DVDROM and CDRW), USB devices (like Iomega Zip Disk) and SCSI tape drives (like 
HP DAT40).  We have even successfully used HyperSCSI is to write CDs remotely over 
our own live corporate LAN. File systems like Microsoft’s FAT16/FAT32, SGI’s XFS, 
IBM’s JFS and Linux Ext2/Ext3 have all been successfully tested on HyperSCSI drives. 
HyperSCSI clients and servers have been successfully implemented on Linux, while 
client versions on Windows 2000 and Solaris 8 is currently in development. Encryption 
schemes that have already been implemented include 64-bit Blowfish and 128-bit 
Rijndael. HyperSCSI has been assigned its own IEEE Ethertype Number, and will soon 
receive a registered IP port for HS/IP implementations. 
 
Areas that are currently under development (at the time of writing of this document) 
include aspects of the Management Command Stream, the Transmission Pause / Resume, 
various hashing and security related options, HS/IP implementation and Windows 2000 
and Solaris 8 versions of the Linux client. With continued optimisations and bug-fixes of 
the reference implementation, we expect raw block data read speeds for a RAID0 
subsystem of 8 drives on normal frame Gigabit Ethernet to exceed 100MB/s in early 
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2002. Another effort underway is the testing of several N-channel communications 
schemes for HyperSCSI. A Peer Round-Robin scheme is likely to be used in the final 
implementation. The documentation of HyperSCSI specifications is also critical in order 
to allow other organisations to adapt and build their own HyperSCSI solutions. Currently 
there are three documents in the HyperSCSI specifications, HyperSCSI Protocol 
Specifications, HyperSCSI Security Specifications and HyperSCSI Management 
Command Stream Specifications. A Quick Reference Manual, Reference Implementation 
Source Code Documentation, and various introductory documents like this one will also 
be provided. These documents will be available on our website when completed. 
 
8. HyperSCSI Applications and Conclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: HyperSCSI in Action 
 
We believe that HyperSCSI provides an opportunity to address various concerns and 
open up new possibilities for network storage. The Local HS/eth protocol allows the 
construction of high-speed Ethernet based SANs while the use of Wide-Area HS/IP 
permits mobile devices like laptops to access the corporate SAN directly (bypassing 
servers if need be). Storage devices can support SAN or NAS or both access methods 
simultaneously through the use of a single network interface. Home devices will also be 
able to access storage directly with simple plug-and-play methods over Fast Ethernet or 
Wireless LAN using HyperSCSI’s device discovery schemes. HyperSCSI has also been 
designed with the future in mind. It supports more than 32,000 different device options 
that will allow vendors to introduce a wide variety of vendor-specific capabilities and 
technologies, without sacrificing interoperability. The protocol also allows each single 
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HyperSCSI connection to handle 64 simultaneous in-transit SCSI commands, each with 
SCSI command block sizes up to 512KB. These SCSI command block sizes can be 
further increased six-fold by using Gigabit Ethernet jumbo frames, thus providing an 
even higher level of performance.  
 
In conclusion, we believe that HyperSCSI is a relatively simple technology that can 
provide users with performance, security, scalability and flexibility, thus making it a 
viable alternative solution for network storage applications. 
 
For more information on HyperSCSI, please visit our website at 
http://nst.dsi.nus.edu.sg/mcsa/  
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1. Introduction 

Making copies of large sets of data is a common activity.  These copies can provide a 
consistent image for a backup, a checkpoint for restoring the state of an application, a 
source for data mining, real data to test a new version of an application, and so on.  One 
characteristic all of these uses have in common is that it is important that the copy appear 
to occur atomically, i.e., any updates to the data source being copied either occur before 
or after the copy.  In this work, we examine the history, the state-of-the art, and possible 
future of mechanisms for copying large quantities of data via storage subsystem facilities 
for providing point-in-time (PiT) copies.   

The Storage Networking Industry Association (SNIA) defines a point-in-time copy as: 

A fully usable copy of a defined collection of data that contains an image of the 
data as it appeared at a single point-in-time.  The copy is considered to have 
logically occurred at that point-in-time, but implementations may perform part or 
all of the copy at other times (e.g., via database log replay or rollback) as long as 
the result is a consistent copy of the data as it appeared at that point-in-time.  
Implementations may restrict point-in-time copies to be read-only or may permit 
subsequent writes to the copy.  Three important classes of point-in-time copies are 
split mirror, changed block, and concurrent.  Pointer remapping and copy on write 
are implementation techniques often used for the latter two classes. cf. snapshot [1] 

As hinted at by the above definition a range of point-in-time copy facilities exist.  Some 
of these facilities operate at the logical level of the file system [2][3] and some operate at 
the physical level of the disk storage subsystem [2][4][5][6].  We focus on copy facilities 
provided by disk storage subsystems. 
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Before the invention of point-in-time copy facilities, to create a consistent copy of the 
data, the application had to be stopped while the data was physically copied.  For large 
data sets, this could easily involve a stoppage of several hours; this overhead meant that 
there were practical limits on making copies.  Today’s point-in-time copy facilities allow 
a copy to be created with almost no impact on the application; in other words, other than 
perhaps a very brief period of seconds or minutes while the copy is established, the 
application can continue running. 

This paper describes the functionality of a point-in-time copy facility and describes both 
the benefits and drawbacks of providing this facility on the storage subsystem.  While 
there are other benefits, the biggest benefit of providing this facility on the storage 
subsystem is performance; we do not needlessly add load to the storage network or host 
as part of making the copy.  The biggest drawback is that the storage subsystem in 
today’s world is only aware of data at the level of logical units and blocks;i this makes it 
hard to meaningfully perform copies at a granularity of less than an entire logical unit. 

After defining the concept of point-in-time copies, we briefly survey several existing 
approaches including EMC’s TimeFinder[4], IBM [7] and StorageTek’s [8] virtual array 
solutions, and several file system based approaches.  Although the focus of this paper is 
on point-in-time copy solutions for block controllers, we also describe file system 
snapshots, in particular Network Appliance’s snapshot feature [9]. We then describe the 
FlashCopy facility of IBM’s Enterprise Storage Subsystem (ESS) [6] which was 
developed in our labs; we present performance results showing that this facility allows 
copying arbitrary amounts of data in almost zero time. 

We then describe one possible future for point-in-time copy facilities.  We see two main 
future thrusts for point-in-time copy facilities.  This first is improved performance; while 
today’s facilities can make a copy in almost zero time, even this is sometimes too much 
time.  The second is a melting of the division between the organized logical view of data 
implemented by a file system and the physical view as seen by today’s disk subsystems 
[10].  In particular we believe that the arrival of object based storage e.g., [11], will 
provide a critical enabler for allowing a disk subsystem to provide a physical point-in-
time copy of logically meaningful data. 

The rest of this paper is organized as follows.  The next section provides a background on 
point-in-time copy facilities, describing the different approaches to implementing these 
facilities and the tradeoffs between point-in-time copies at the file system level and at the 
storage subsystem level.  Section 3 describes several existing facilities for point-in-time 
copy and Section 4 describes the FlashCopy facility of IBM’s ESS, showing how this 
facility allows copying almost arbitrary amounts of data in nearly zero time.  In Section 
5, we describe one possible course of development for point-in-time copy solutions prior 
to concluding.  

2. Background 

As we stated in the introduction, a point-in-time copy may be made for many reasons.  
While backup is probably the most common reason, checkpointing, data mining, testing 
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and other reasons also exist.  In all cases, prior to making the copy, applications 
accessing the data must purge any caches they have; many middleware applications, such 
as databases, provide mechanisms to ensure that the underlying storage subsystem or file 
system has a consistent copy of the data without stopping the application.  In addition, for 
copy facilities provided by the storage subsystem, the file system must ensure that it has 
written a consistent image of the data to the storage subsystem.    

Obviously if the data to be copied involves multiple entities, e.g., multiple logical units or 
multiple file systems, this quiescing of the application must occur atomically for all of the 
entities.  Only after all of the copies have been made, is the application again allowed to 
modify the underlying data.  This means that application access to the data is limited for 
the duration of time it takes to execute the copy.   

Prior to the development of point-in-time copy solutions, the only way to make a copy of 
a data set was to allocate space and physically copy the to data.  To ensure consistency, 
the application was not allowed to access the data while the copy was being executed.  
Since the time required to execute a physical copy is a function of the size of the data, 
this could easily lead to an application being unavailable for an extended period of time.  
This time overhead, as well as the need to fully allocate the space required for the target, 
limited the use of copies; one would not copy an entire volume of data every hour for 
purposes of checkpointing an applications state. 

In none of today’s popular facilities, however, does the point-in-time copy command 
execute a physical copy of the data.  Instead the data is either copied prior to the 
execution of the command or some form of copy-on-write like facility is used.  Not only 
does this reduce system overhead, but also it enables copies to be used in the range of 
applications listed above.  

As stated above, there are different classes of implementations of point-in-time copy.  In 
a split mirror a mirror of the data is constructed prior to the point-in-time copy.  After a 
complete mirror of the data to be copied exists, the point-in-time copy is made by 
“splitting” the mirror at the instance in time of the copy.  The biggest benefit of a split 
mirror solution is that the point-in-time copy executes very quickly; there is no work 
required in order to create tables or mark data as copy on write.  On the other hand, split 
mirror suffers from a significant drawback in terms of advanced planning.  One cannot 
create a split mirror at any time one wants; rather, it is necessary to plan ahead and create 
the mirror in advance of splitting.  Since the mirror requires a complete physical copy of 
the data, the set up for creating a split mirror must begin significantly prior to the actual 
point-in-time copy.   A second drawback of a split mirror solution since it is based on 
physical mirror copy is that it inherently requires that the space allocated for the target of 
the copy be equal to the space used by the source.  Finally, the overall storage system 
performance is affected by the requirement to continuously mirror the changes until the 
administrator decides to split the mirror. 

One variant of a split mirror solution allows the mirror to be resynchronized with the 
source.  When this is done, only the records of the source, which have changed since the 
mirror was split, are copied to the source.  This allows a true mirror to be created much 



 

262 

faster than if the entire data set needed to be physically copied to the mirror.  This variant 
does, however, require work to create data structures to track which records in the source 
have been modified. 

A second class of implementations is changed block.  A changed block implementation 
shares the physical copy of the data between the source and the target until the data is 
written; this sharing can be at the level of a sector, a track, or conceivably some other 
granularity (we refer to this unit as a record below).  To allow the data to be shared some 
form of table is used to determine where the actual copy of the data exists.  When the 
source and target are accessed this table is used to determine from where the data is to be 
retrieved.   

This table can be the directory that exists in virtual arrays such as log structured arrays 
[12] or it can be some other mechanism that is used only for purposes of supporting a 
point-in-time copy, such as a copy-on-write bitmap that tells whether or not a given 
record has been copied.  A changed block approach is easy to implement on completely 
virtual systems, or other mechanisms, which use indirection for all accesses; however, it 
is also possible to implement a changed block approach in more conventional systems. 

When the data is written a changed block implementation will either manipulate pointers 
in a directory or copy the written data.  In either case, after the update the source and the 
target no longer share a physical copy of the given record.   

A changed block implementation requires setting up the table to keep track of what 
records have been copied when the point-in-time copy is made; this obviously takes time 
that is linear in the size of the data to be copied.  However, since these tables can be no 
more than a copy-on-write bitmap, this can be done very efficiently.  One big benefit of 
changed block implementations over split mirror implementations is that no advanced set 
up is required prior to executing a point-in-time copy.  Another feature of a changed 
block implementation is that the amount of space required is a function only of the 
amount of data modified. 

A concurrent point-in-time copy is similar to a changed block implementation with one 
significant difference.  A concurrent implementation always physically copies the data.  
Like a changed block solution, however, when the point-in-time copy is executed, no 
data is physically copied.  Instead, the concurrent solution sets up a table to keep track of 
which data has been physically copied.  It then physically copies the data in the 
background, using the table to synchronously copy any records that are about to be 
modified. 

One other axis on which point-in-time copy solutions can be differentiated is whether or 
not the target of the copy is a first class citizen, i.e., can the target be freely accessed or 
are there limitations on the way it is used, e.g., no updates, only sequential reads, etc. 

As discussed in the introduction point-in-time copies can be made either at the file 
system level or at the storage subsystem level.  The biggest benefit of performing the 
copy at the storage subsystem level is that it can reduce the load on the server and on the 
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storage network (assuming one is being used).  When the copy is made at the level of the 
file system, all of the computation of the copy must be made on the file server; in 
addition, whenever physical copies are required, the data must be transferred up through 
the storage subsystem, over the storage network to the server and then back down the 
same path.  If the copy is made by the storage subsystem, we can totally avoid the 
overhead on the storage network and on the host.  

3. Point-in-Time Copy Today 

Research on storage point-in-time copy techniques is extremely scarce.  Since one of the 
major uses of point-in-time copy is as a building block for efficient backup, the literature 
on backup techniques covers partially this topic [13].  In this section, we review some of 
the major point-in-time solutions available in the market.  In addition, while we focus on 
disk storage subsystems, we describe two point-in-time copy techniques at the level of 
the file system. 

3.1 Split Mirror Solutions 

EMC’s TimeFinder [2][4] and Hitachi’s ShadowImage [5] are two examples of split 
mirror implementations.  We describe TimeFinder’s major characteristics.  TimeFinder 
allows creating mirror images of standard devices.  These mirrored images, called 
Business Continuance Volumes (BCVs), may be later split and accessed independently.  
BCV images are created in the background and several copies of a standard device may 
be created.  BCVs can go through the following stages:  

• Establish – a new BCV device is established and, initially, contains no data. 

• Isynch – the point-in-time where the BCV pair is synchronized with the standard 
device. 

• Split – makes the BCV volume available to the host.  The content of the BCV volume 
is a point-in-time copy of the standard device at the time the split command was 
issued. 

• Re-establish – The volume is re-assigned as a mirror of the standard device.  The 
BCV volume is refreshed with any updates made to the standard device, and any 
updates to the BCV after the split are discarded. 

• Restore – Copies the contents of the BCV back to the standard device. 

• Incremental restore – Discards all the changes made to the standard device since the 
split occurred and copies updates made to the BCV device to the standard device. 

The latest version of TimeFinder [14] introduces changed block capabilities: a new 
instant split operation allows BCVs to become immediately available to the hosts. This is 
achieved by copying tracks before they are modified in the standard device.  
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3.2 Log Structured Changed Block Solutions 

IBM’s RAMAC Virtual Array (RVA) [15][7] and StorageTek’s Shared Virtual Array [8] 
are major examples of changed block solutions that leverage the log structure data 
structures for their point-in-time copy implementation.  IBM’s RVA represents a volume 
using a set of tables that eventually point to the set of tracks that comprise the volume.  
RVA also maintains a reference count for each track containing physical data.  A 
snapshot operation from a source to a target volume requires (1) decreasing the reference 
count of the target tracks, (2) copying the “track” table from the source to the target and 
(3) increasing the reference count of the source volume tracks.  RVA’s snapshot is both 
efficient in time – requiring only to copy the track table of the source and updating the 
track reference counts – and efficient in space – since no copy of the user data is 
required. 

3.3 File System Solutions 

Many UNIX-like file systems have leveraged their inode, pointer-based data structures to 
implement efficient snapshot capabilities.  The Andrew File System [3] implements a 
Clone operation that creates a frozen copy-on-write snapshot.  Snapshots are read-only 
and are traditionally used for backup purposes, to allow backing up a consistent point-in-
time snapshot, with minimal disruption of the activity on the production file system.  In 
addition, snapshots can be used for easy restore of deleted or corrupted files.   

Network Appliance’s filer [2] also implements a copy-on-write-based snapshot facility 
[9] that creates on-line, read-only copies of the entire file system.  It currently allows 
administrator to create up to twenty snapshots of a file system. In order to support 
snapshots, the free block data structure is extended to mark to which snapshots the block 
belongs. A block might be returned to the “free pool” only after each bit, for each 
snapshot is zero. Snapshot are created under the “~snapshot” directory.  Users may 
retrieve files from previous snapshots, and restore them using standard file system “copy” 
commands. 

Network Appliance has integrated its snapshot features with a SnapMirror/SnapRestore 
capability.  SnapMirror allows automated, consistent replication of file systems to remote 
sites. It creates periodically a snapshot of the file system and then transfers the modified 
blocks to the remote site.  After a baseline transfer is complete, Snapmirror leverages the 
snapshot bitmaps to identify which blocks need to be transferred to the remote site. 
SnapRestore allows restoring a mirrored snapshot to the primary. 

File system snapshots are very efficient operations, since they only require keeping 
copies of modified or deleted files. However, since, not only the data, but also the 
metadata is read-only, one cannot modify metadata attributes of files in snapshots.  For 
example, revoking access to a file from a user does not prevent him from accessing 
(earlier versions of) the file in previous snapshots.  In addition, when a copy is required, 
the data must be transferred from the storage subsystem to the file system and back to the 
storage subsystem. 
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4. ESS's FlashCopy Today 

FlashCopy is an ESS Copy Services function, developed in our labs, which is a 
concurrent class point-in-time copy operation. It utilizes copy-on-write bitmap techniques 
to maintain knowledge of which  blocks of data have been a modified after the point-in-
time copy was created. Real storage equal in size to the source data is required on the 
target volume. When a block of data on the source volume is modified, the previous 
version of that data is copied to the target volume before the new modification overwrites 
it.  An optional background copy task may be initiated to perform the physical copy of 
the entire source volume to the target volume.  

FlashCopy, unlike a split mirror technique, provides instant availability for read and write 
data on both the source and target volumes as soon as the invocation of the operation is 
complete. It utilizes the ESS cache and fast write functionality to mask any performance 
affects related to the point-in-time copy which may be activated for a given volume. 
FlashCopy operates on volumes for zSeries hosts and for  volumes attached to open 
systems hosts. When invoked from a zSeries, the host program can specify that only a 
portion of the volume be copied. This is called a sparse volume. If portions of the volume 
are not allocated or are catalogs or volume table of contents, these can be excluded from 
the copy to the target and managed by the host software. An open systems volume is 
copied in its entirety.  

The most important performance metric related to the creation of the point-in-time copy 
is the elapsed time required for the invocation of the copy on one pair or multiple pairs of 
volumes. During invocation, the application must maintain a consistent image of the data 
across all volumes used for the application. The amount of time required can be 
considered an application impact and must be minimized by the design of the copy 
function.  

When a FlashCopy is initiated, the source and target are entered into a relationship using 
a bitmap table which reflects the location of the point-in-time data - either on the source 
volume or on the target volume. While the relationship table is being created within the 
ESS control unit, the two volumes are made unavailable to all customer access. The time 
for this operation can vary considerably with the method of FlashCopy initiation. The 
zSeries program DFSMSdss [15] performs various steps prior to the relationship creation 
period which elongates the initiation. DFSMSdss must read the Volume Table of 
Contents (VTOC), perform RACF security verifications, and then reserve the volumes 
involved for data integrity purposes. Given this task overhead, the FlashCopy initiation 
can take approximately 6 seconds for a 3 gigabyte volume. By contrast, the TSO 
FlashCopy function and the ESS Specialist Command Line Invocation does not include 
reading or verification steps and can take less than 2 seconds for the same relationship. 
By  performing the invocation for many volumes in parallel, the time to complete the set 
of relationships is much better than the summation of individual invocations.  
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# of Flash 
Copies 

dss small 
VTOC 

dss large 
VTOC 

TSO 
invoked 

1 6 sec 8 sec 1.2 sec 
256 48 sec 66 sec 18 sec 

 

As can be seen from the table, the invocation time is a function of the number of volumes 
in the total data collection and the amount of information on the volumes as reflected in 
the VTOC.      

Another important performance measurement is the effect on application response time 
and the number of I/O operations that can  be executed per second while a FlashCopy 
relationship exists for a volume pair or number of volume pairs. Measurements were 
made using 256 FlashCopy pairs while running a cache standard workload which show 
less than 3% reduction in the I/O rate when the workload volumes are in a relationship 
with the no background copy option selected. With the background copy option selected, 
the rate reduction is about 7%.  

The change to the workload response time is negligible when the no background copy is 
specified. There is negligible response time increase when the background copy is 
specified for 32 volumes or less in one control unit. With 256 volumes in background 
copy mode, the response time rises doubles until the number of  background copy tasks is 
reduced by completing the copy for a pair of volumes.   

5.  The Future of Point-in-Time Copy 

The world of data copies has improved significantly since the invention of the first 
facilities that allowed a logical copy without requiring a physical copy.  However, there 
is still room for improvement.  In the small, the improvements include improving the 
performance of today’s solutions to reduce even further the impact on the application for 
creating a copy.  In addition, it should be possible to provide greater flexibility in the 
facilities provided by storage subsystems, allowing a greater degree of knowledge of the 
logical structure of the data to flow down to the physical layer. 

In the large, the greatest improvement may come from new storage architectures such as 
object based storage.  With an object based storage and the appropriate file system 
architecture, it should be possible to completely bridge the gap between the logical 
structure as seen by the file system and the physical structure provided by the storage 
subsystem. 

5.1 Improving Today’s Point-in-time Copy 

As fast as the execution of a point-in-time copy may be, until it is instantaneous, it will 
never be fast enough.  This is because as described in Section 2, while the command for 
the point-in-time copy is executing, it may be necessary to limit application access to the 
data being copied.   



 

267 

There are several aspects to improving the performance of today’s point-in-time copy 
solutions.  First, it is important to speed up the time required to ensure that the 
component performing the copy has a copy of the data that is consistent with the 
application’s view of the data.  This includes ensuring that all data that is in cache has 
been written through to the appropriate level of the system or at the very least knowing 
what data needs to be retrieved from a cache.   

Second, the data structures used to manage the copy need to be set up quickly.  To some 
degree this is a problem that is inherently linear in the size of the data to be “copied”; for 
instance, a table recording which data has been copied must be a size that is the same 
order of magnitude as the size of the data.  However, even here, by intelligently preparing 
the data structures it may be possible to hide some or most of the overhead from the 
application. 

In addition to improving performance, we believe that point-in-time copy solutions will 
evolve to have more flexibility in terms of the allowing knowledge of a file system’s 
logical structure to flow down to the storage subsystem.  To a degree this exists today for 
mainframe data with the support for making point-in-time copies of individual data sets 
[6][16].  However, more work is required to provide this same facility for partitions in a 
way that is not tied to a particular logical volume manager or file system. 

5.2 Point-in-time Copy and Object Based Storage 
Object Based Storage (e.g., [11]) provides the client (storage consumer) with a storage 
abstraction closer to the client’s view of the data than the conventional device view.  In 
conventional storage devices the client perceives a device as a collection of storage 
blocks (usually fixed length).  Organizing this primitive storage into entities significant to 
applications and managing all storage resources is delegated to client software (operating 
system), sometimes in conjunction with a third party (a file server).  Only through client 
and/or file server software is the client able to attach significance to data.  This classical 
structure has two main disadvantages: 

• it is hard to scale to large volumes of data and large throughput since data servers 
quickly become bottlenecks  

• data management at storage level has no relation to content  

Widely discussed in academia and now starting to happen in industrial laboratories, a 
new form of storage access - Object Based Storage - changes the way storage is accessed 
and managed. 

Object Based Storage (OBS) relegates space management to the storage subsystem.  
Instead of perceiving a volume as an amorphous collection of equally sized storage 
blocks the storage client perceives now a volume as a collection of variable length 
(possibly sparsely populated) objects and the mapping of those objects to device-blocks 
is delegated to the storage controller. 
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Client access to data is based on an object-handle (capability) established by a 
management component in the network.  Access to data is protected through the 
capability and unmediated. 

In addition to enable building highly scalable storage subsystems (as the access does not 
have to go through a data server) Object Based Storage make access units (objects) 
“visible” and manageable at storage subsystem level.  The previously discussed copy 
functions can now be performed based on policies pertinent to specific objects or classes 
of objects. 

In addition since the storage subsystem has complete control over device block location 
information and internal object structure, management functions, such as point-in-time 
copy or incremental point-in-time copy, can be made with minimal space (and time) 
overhead and encompass any set of objects (not necessarily a volume or a large portion of 
a volume).  And although the examples that follow involve files it can easily be observed 
that they might as well refer to database tables or any other type of storage object. 

5.2.1 Point-in-time copy for a set of files 

Point-in-time copy for a set of files in a file-system built using Object Based Storage 
involves the following steps on a client/administrative system: 

1. Lock the set of files 

2. Copy the directory entries for the set of files 

3. Request a point-in-time copy for the set of objects containing the files data from the 
storage subsystem to be performed asynchronously 

4. Release the locks 

5. Wait for the point-in-time copy command to end 

The storage subsystem will do the following: 

1. Mark all the involved objects (their control structures) as copy-on-write 

2. Return to the host an indication of "successful request" 

3. Perform the request while accepting read/write operations from the host 

It is easy to observe that given enough free space to accommodate host write operations 
during the point-in-time copy generation, any number of point-in-time operations can be 
performed simultaneously. 

To perform such a point-in-time copy for a set of files using today’s mechanisms, would 
require that we give the control unit detailed knowledge of the way the file system lays 



 

269 

out files.  Since on disk layout differs between file systems, separate implementations 
would be required for each file system supported. 

6. Conclusions  

We have described the current state of the art of point-in-time copy operations, focusing 
on the FlashCopy facility of IBM’s ESS developed in our labs.  Using FlashCopy as an 
example, we have shown how today’s point-in-time copy facilities can perform a 
semantic copy of large quantities of data in essentially zero time. 

While performance of today’s copy is orders of magnitude superior to the time required 
to make a physical copy, there is still some room to improve performance.  More 
significantly we see that the future melding of block based and file based storage, 
promised by facilities such as object based storage, will provide an opportunity for 
storage subsystems to provide point-in-time copy for entities that are meaningful to the 
end user, e.g., files, and not just entire or large portions of logical units. 
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Abstract 
Storage is increasingly becoming a commodity shared in global scale, either within the infra-
structure of large organizations or by outsourcing to Storage Service Providers. Storage re-
sources are managed and shared in the form of logical volumes; that is, virtual disks that aggre-
gate resources from multiple, distributed physical devices and storage area networks. Logical 
volumes are dynamically  assigned to servers according to a global resource utility model. 

This paper focuses on the problem of locating and accessing logical volumes in very large 
scale. Our goal is to devise mechanisms that are least intrusive to the existing Internet infra-
structure. Two methods are proposed, based on DNS name resolution and BGP routing, respec-
tively. The former is based on the current DNS protocols and infrastructure; the latter requires 
extensions to the existing BGP protocols. The two approaches are evaluated by means of simu-
lations, based on realistic workloads and actual Internet topology. It is shown that the simpler 
and less intrusive DNS-based approach performs sufficiently well, for even small caches on the 
clients. 

1 Introduction 

Storage Service Providers (SSP) such as ScaleEight [1] and StorageNetworks [2] pro-
vide network-based storage solutions for customers that wish to outsource some or all 
of their data storage and its management. They provide a global storage infrastructure 
that enables their customers to create, manage and distribute large sets of data across 
multiple geographic locations.  
Clients access such a global storage service in one of two ways. First, directly by means 
of traditional file system APIs, e.g., through NFS mount-points. These clients are typi-
cally hosts that execute application services for the organizations that outsource storage 
to the SSP. Second, by means of Content Delivery Networks (CDNs) [3, 4], which rep-
licate certain types of the data (originating from the SSP) closer to the edge of the net-
work. We envision that in future storage services, the borderline between SSPs and 
CDNs will be blurred, as content will be dynamically created and stored at the edge of 
the network. The emerging technologies for distributed application services [5, 6] and 
peer-to-peer CDNs [7] point in that direction. Throughout this paper, we use the term 
clients to refer to both these classes of clients. 
Typically, the infrastructure of an SSP consists of a pool of storage resources, such as 
disks, disk arrays and Storage Area Networks (SANs), as well as compute resources 
(servers) for providing access to the storage. This infrastructure is physically distrib-
uted across multiple geographic locations. SSPs may own their own Data Centers, or 
their resources may be hosted at Internet Data Centers (IDCs), such as those of Exodus 
[8] and Qwest [9]. Moreover, we anticipate that, in the future, storage service providers 
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will not necessarily own their own physical resources. Instead, their infrastructure will 
be provided by on-demand aggregation of resources from multiple disparate data cen-
ters, following the principles of a resource utility model [10, 11]. 

Even today, the infrastructure of SSPs and big corporations consists of many, heteroge-
neous and distributed physical storage resources. In this context, logical volume man-
agers are used in order to simplify the management and facilitate the use of diverse re-
sources. Logical volumes provide an abstraction for aggregating storage resources 
spread across multiple disks (that are attached to the same server or the same SAN) to 
appear as a single virtual storage device [12]. Data is organized within the boundaries 
of the logical volumes. Data on volumes are accessed through one or more servers that 
mount that volume. The data may be organized in the form of a file system or a data-
base. To keep the discussion simple, in the rest of the paper, we will refer to data as 
files. 

Clients access a volume by going through the corresponding file server, which coordi-
nates all accesses via a file system API.  When a client requests access to a file (per-
forms a lookup), a file-handle, which uniquely identifies the file in the system, is re-
turned back to the client. This file-handle contains a Volume Identifier (VID) that refers 
to the logical volume where the file is physically stored [13, 14].  Files accessed by a 
client may be spread across multiple logical volumes. Therefore, for every file access, 
the client must resolve the location of a file server that “owns” the logical volume 
where the file resides.  

In a resource utility model, the mapping of logical volumes to physical resources and 
their assignment to file servers can be dynamic. Therefore, a key problem is how to 
provide efficient and scalable mechanisms for locating a logical volume and its custo-
dian file server. The system model we assume for our discussion is outlined in section 
2. In section 3, we propose a mechanism by which file servers can locate the logical 
volumes that they are responsible for. Sections 4 and 5 introduce two mechanisms for 
resolving the identity of a server that provides access to a volume. The main idea be-
hind the proposed solutions is to exploit well-understood mechanisms, with proven 
scalability in the Internet, and adapt them for locating volumes in very large scale. Our 
aim is to use existing services (e.g., DNS), with no or minimal changes to the existing 
infrastructure. The two approaches are evaluated in section 6, using simulation based 
on both real and synthetic workloads, as well as real Internet topology information. 
Section 7 discusses related work and section 8 concludes the paper. 

2 System overview  

The infrastructure of an SSP resembles any other network in the Internet. We assume it 
is divided into a number of Zones, each with a unique identifier, Z-ID. Each Zone con-
sists of one or more Autonomous Systems (AS) and each Autonomous System consists 
of a number of Autonomous System Regions (ASR). An ASR representative maintains 
a database that contains information on the logical volumes within its region and their 
assigned servers. By organizing the system this way, we uniquely identify any logical 
volume by a Volume identifier (VID), using the convention “Volume-ID.ASR-ID.AS-
ID.Zone-ID”. 
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File servers typically retrieve their logical volume assignment by interacting with an 
ASR representative. The volume assignments may be dynamic to accommodate system 
reconfiguration, fluctuating demand or changing workloads. Automating the resource 
management in such environments is the focus of several current research projects [10, 
11, 15]. 

When a client requires access to a file, it performs a lookup by sending a lookup re-
quest to the file server that hosts the logical volume where the parent directory of the 
file resides. The file server performs lookup locally on the parent directory and returns 
the file handle corresponding to the file. Note, that the volume (and server) of the par-
ent directory, where the file handle is constructed, and the volume of the file itself may 
not be the same, as it is the case in systems such as Archipelago [16] and DiFFS [14]. 
The file-handle contains a Volume Identifier (VID) that refers to the logical volume 
where the file is physically stored. In order for the clients to access the file, they must 
resolve the VID and locate the file server that “owns” the corresponding logical vol-
ume. 

3 Assignment of logical volumes to servers 

When a file server comes online, it sends out a request identifying itself, asking for 
logical volumes that it is responsible for. This functionality is implemented using the 
DHCP protocol [17]. When an ASR representative within the vicinity of the file server 
receives the request, it locates the list of logical volumes that the requestor is responsi-
ble for and responds back supplying the list to the server. The response contains the 
configuration information of the logical volumes. For example, in an IP-based SAN, 
the response may contain Logical Unit Numbers (LUN) and their corresponding target 
IP addresses, along with other information such as whether a logical volume is stripped, 
mirrored, etc. The assignment of logical volumes may be pre-configured via storage 
management tools or may be dynamically assigned by an ASR representative upon re-
ceiving the request. Once an assignment is made, the representative for the ASR up-
dates its database to reflect the new state of server-to-volume assignment. These as-
signments can be dynamically changed to cater for various system conditions such as 
file server utilization, load balancing, locality, etc. Any reassignment of logical vol-
umes affects only the database of a specific ASR and leaves the rest of the mapping in 
the system intact. 

In very large systems following the resource utility model, we cannot assume that  file 
servers can reach ASR representative via DHCP.  Two solutions can be applied in such 
environments: 1) the file server is pre-configured with a set of logical volumes; 2) the 
file server is configured with the identity of an ASR representative (not necessarily of 
its local ASR) which it should contact to retrieve its volume assignments. 

4 Logical volume discovery by clients using DNS 

In this approach, each Zone, AS and ASR has one or more designated representatives, 
which, in practice, are part of the existing DNS infrastructure (authoritative servers) 
[18]. The root server of the SSP contains information on all zone representatives. Every 
zone representative maintains a database with all the AS representatives within its zone. 
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In the same way, an AS representative maintains information about all ASR representa-
tives within that AS.  

root.myssp.com

Z2 

AS2

FS1 FS2 FS3

1 8 7 Z-ID AS-ID AR-ID LV-ID 

1.1.2.2 -> FS1 
ASR1

8.1.2.2 -> FS2 

7.1.2.2 ->FS3 

Volume Identifier (VID) Mapping Database 

Zone representatives 
Database 

AS representatives 
Database 

ASR representatives 
Database 

Z1 

C1

DNS resolution path for 
“Vol7.ASR1.AS2.Z2.root.myssp.com”  

 
Figure 1: VID resolution using DNS 

 

For a client to access a file, it has to first retrieve a file handle via a lookup process. The 
client then needs to locate the file server that corresponds to the Volume Identifier 
(VID) in the file handle. The identity of the server is resolved by exploiting typical 
DNS name resolution [18]. For example, when a client C1 receives a file handle that 
contains VID 7.1.2.2, it constructs a fully qualified domain name 
“Vol7.ASR1.AS2.Z2.root.myssp.com” based on the numerical VID contained in the 
file handle and the root domain name of the SSP. The root domain name is obtained 
during the file system mount time The client then resolves this (artificial) domain name 
through a normal DNS resolution process, as depicted in Figure 1. This process does 
not require any changes to the existing DNS infrastructure. However, the root server of 
the SSP needs to be configured to respond to the domain suffix “Z2” by specifying the 
authoritative representatives for that part of the domain suffix. When a client’s requests 
land at the representative for an ASR, the address of the file server that corresponds to 
the VID is returned. Results of this query can be cached at the client for improved per-
formance.  

Various optimizations are possible in order to speed up the resolution process.  One 
possibility is to have file servers resolve the logical volume mapping, cache the infor-
mation locally and return the mapping information when a file handle needs to be re-
turned back to the client. This cached information could significantly reduce the net-
work traffic especially when many clients reference the same logical volume. Cached 
information can be kept loosely consistent with the actual mapping by performing peri-
odic checks. Also, resolution at the file server can be performed in an asynchronous 
fashion to hide any extra delays. Invalid references can arise due to volume reassign-
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ments or the non-availability of file servers. In this case, clients resort back to the nor-
mal resolution process.  

Clients can also contact a local DNS server and have that server perform the logical 
volume to file server mapping. Typically, employing optimizations like this has proven 
to produce higher cache hit ratio [19] in resolving domain names at the client. 

5 Logical volume discovery using suffix-based routing 

This section introduces an alternative approach for clients to retrieve the custodian file 
server of logical volumes, called Volume Identifier Routing Protocol (VIRP). Given a 
VID, VIRP routes the request for VID resolution to the corresponding ASR representa-
tive taking the shortest ASR (or AS) path and returns the address of the corresponding 
file server to the client.  

VIRP is based on suffix reachability that is similar to prefix-based routing performed 
using BGP [20]. There are two variations of the protocol. In the first variation, each 
ASR representative advertises itself to its neighboring VIRP routers. These advertise-
ments are propagated further to other VIRP routers. For a particular VIRP router, rout-
ing advertisement of an ASR representative indicates the shortest path towards that 
ASR representative.   
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Figure 2: Example showing VIRP advertisements and routing VID resolution 

For example, Figure 2 shows the routing table  at VIRP router ASR4. The routing table 
contains the next hop address for other ASR representatives following the shortest path. 
As shown earlier in section 2, VID contains a Volume ID, an ASR ID, an AS ID, and a 
Zone ID. Clients resolve VID by routing the request to the ASR representative corre-
sponding to the ASR part of the VID. The routed request takes the shortest path leading 
to the target region. For example, a client C1 that wishes to resolve a VID that belongs 
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to ASR2 will first route to ASR4 and then take ASR3 as the following hop and route to 
ASR2. In VIRP, the clients receive routing advertisements but do not perform any ad-
vertisements. 

Alternatively, to reduce the size of VIRP routing tables, the advertisement can be per-
formed at the AS level. We introduce a representative for each AS to receive requests 
from clients and direct them to ASR representatives. The AS representatives advertise 
themselves as it was done in the previous case. Once a client request is routed to an AS 
representative, the latter can forward the request to an ASR representative by perform-
ing a local lookup using the ASR-ID. The respective ASR representative responds to 
the client with the address of the file server using the volume part of the VID. This 
greatly reduces the number of entries kept in the routing tables but it requires defining 
additional protocols for interaction between AS and ASR representatives. To give the 
readers an idea of the savings on routing table size, assume that an ASR corresponds to 
a network prefix on the Internet. There are 150K unique prefixes whereas the number 
of AS on the Internet is on the order of 10K.  

There are several ways to deploy this type of infrastructure. One way is to reuse the ex-
isting BGP routing infrastructure by adding new protocols. A more practical way is to 
construct an overlay network to build this infrastructure [21]. Such an overlay network 
can be constructed at application level for easy deployment. 

6 Evaluation 

The performance of the proposed DNS-based and BGP-based approaches is evaluated 
by means of simulations. The simulation model is based on an Autonomous System 
(AS) view of the actual Internet topology as of October 2001, and a real-world, glob-
ally distributed workload. We chose this to be a web workload for two reasons. First, 
we believe that Content Delivery Networks will be one of the main applications of a 
globally distributed file system, and secondly, it is one of the few workloads that today 
have millions of globally distributed clients. The metric used to compare the two ap-
proaches is client perceived latency in resolving a VID.   

6.1 Simulation Methodology 
Our simulation model uses three sets of inputs in order to calculate the client perceived 
latency for the approaches: An Internet topology, a set of volumes and their locations, 
and finally the location of the clients and a list of chronologically ordered accesses to 
these volumes. The input parameters are all summarized in Table 1.  

The Internet topology was generated using BGP routing table information obtained 
from a leading ISP, Telestra.net [22], during October 2001. From these routing tables 
an undirected graph is constructed, in which nodes represent Autonomous Systems and 
edges represent their peering relationship. The generated graph contains approximately 
13.000 nodes and 150.000 edges and we assume a uniform edge cost. The distance be-
tween two nodes in the topology is measured in number of AS-level network hops on 
the shortest path between those nodes. The placement of the DNS servers in this Inter-
net topology is decided in the following way. We generated a list of nodes sorted in de-
scending order of their fan-out (number of nodes that are just one hop away from one 
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specific node). The node that has the highest fan-out is selected to be the representative 
for “root” and removed from the list. Next, the set of zone representatives are picked 
from the top of the list and then are removed from the list. The AS and ASR representa-
tives are chosen in the same way.  

Table 1: The main parameters of the experimental platform and their corresponding val-
ues. The shaded parameters are the ones that we vary in the experiments.   

 Parameter Value 

Topology Distribution Part of real Internet 

Number 20,000 or 80,000 
Volumes 

DNS nodes 4/10/5/100 (Z/AS/ASR/Volumes) or 4/40/5/100 

Number 90,000 or 1 million 
Objects 

Distribution Sequential or Random 

Number 5,400 Client clusters 

Distribution According to real AS location Clients 

VID access pattern WorldCup98 or Random 

 

The object references were obtained from web logs of the World Cup Soccer 1998 
event [23]. The logs contain references to nearly 90K unique files. These files are 
mapped on 20K and 80K volumes, respectively for the two scenarios. While clearly the 
World Cup site would not in reality be located on this many volumes, a client would 
not access solely one site. Instead a client would be accessing many different volumes 
of various sites. Our client workload can thus be seen to represent a widely scattered 
surfing pattern that is close to a worst-case scenario for the DNS approach. The place-
ment of objects to volumes is done in two ways: sequential and random. For each of 
these algorithms, N files (where N = unique files / no of nodes) need to be placed on 
each volume. For the sequential algorithm, the first N unique files encountered in the 
web log are placed on node 1.1.1.1. The following N unique files are then placed on 
node 2.1.1.1, and so on. As more frequently accessed files tend to show up earlier in the 
web log, this algorithm will place popular files closer to each other. The random algo-
rithm, on the other hand, places the first N files encountered in the web log on a ran-
dom node, the next N files on another random node, and so on.  

The clients’ locations and access patterns were also obtained from the 98 World Cup 
logs. These contain accesses made by roughly 2.6 million clients over the course of 90 
days (includes accesses made 30 days prior and 30 days after the event). To be able to 
assign these clients to the AS node they actually resides on in reality, we developed a 
program that converts IP address of a client to the corresponding AS ID. This clustering 
generated about 5.4K unique client clusters that are located in the same number of 
unique ASs.  
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We use two different client access traces to evaluate the proposed schemes: World-
Cup98 and random. The former is taken straight from the client accesses of the World 
Cup log; the latter is a uniformly random VID accesses. In the World Cup log, all cli-
ents in one AS access, on the average, 1K unique objects, while in the random one, the 
simulation is terminated after 2K unique objects are referenced by each AS. 

To measure the client perceived latency, 20% of the ASs were randomly chosen and 
used in the simulations. They represent 500K clients generating close to 20% of the to-
tal client accesses. For each AS, a list of objects that the clients in that AS accessed is 
generated. In our model, every server (DNS server or VIRP router) that is queried adds 
to the client perceived latency. We express the client perceived latency in terms of the 
number of AS hops involved. This has been shown to be a fair measure of latency [24]. 
Network contention is not taken under consideration. For the simulation, we have used 
simple LRU caching at the clients to store the resolved VIDs. The impact of the size of 
this cache and all other shaded parameters in Table 1 are examined in the next section. 

6.2 Performance Results 
The initial intuition was that the DNS approach should have a higher client perceived 
latency than the VIRP approaches, when the VID lookup cache size is small and/or 
when the locality of VID lookups is poor. In this section, we will investigate how much 
locality the DNS approach needs in order to be comparable to the VIRP approaches, 
and provide a rough estimate on how many VID lookups need to be cached at each cli-
ent for this to be achieved.  
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(a) Sequential object distribution (b) Random object distribution 
 

Figure 3: Results for the DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes: 
20,000. Number of objects: 90,000. Client access pattern: WorldCup98.  

Figure 3a shows the results for the DNS, VIRP-ASR and VIRP-AS approaches using 
sequential object distribution. In the figure, the x-axis represents the various client 
cache sizes and the y-axis represents the average client perceived latency due to the 
VID lookup process. VIRP-ASR has the lowest client perceived latency as it requires 
only one lookup message and it traverses the shortest path between the client and the 
server. For VIRP-AS, there is a potential for one more message, thus the slightly worse 
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performance. The most interesting point in this graph is that the DNS approach per-
forms well even for small client cache sizes. For the sequential object distribution of 
Figure 3a it starts to perform well at 32 entries, but for the random case in Figure 3b, 
this point is only increased to 256 entries. For a straightforward implementation of the 
client cache, this translates to a modest 1KB and 8KB of memory space, respectively. 
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 (a) Sequential object distribution    (b) Random object distribution 
 

Figure 4: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes: 
80,000. Number of objects: 90,000. Client access pattern: WorldCup98. 

Figure 4 shows the effects of what happens if the number of volumes is increased four 
times to 80,000 volumes. As the locality will be poorer than before, we would expect 
the DNS approach to perform even worse. But for the sequential object distribution it 
hardly matters for clients with a cache, as the DNS approach performs as well as be-
fore. However, for the random object distribution the cache size required for DNS to 
become comparable to VIRP-AS is larger. It is now around 2K entries, translating into 
64KB of memory space. 
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(a) Sequential object distribution    (b) Random object distribution 
 

Figure 5: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes: 
20.000. Number of objects: 1 million. Client access pattern: Random.  

The last set of experiments was designed to stress the approaches even further to see 
how they hold up for a random client access pattern with a larger number of objects. 
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Few workloads will have access patterns that are truly random, however, this will pro-
vide us with a worst-case scenario for the approaches. Figure 5 and 6 show the results 
for the random client-access pattern when the number of objects is 1 million. It can be 
seen that the VIRP approaches perform better than the DNS approach for small sizes of 
caches, but their performance remains more or less unaffected by the client cache size.  
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(a) Sequential object distribution    (b) Random object distribution  

Figure 6: Results for DNS, VIRP-ASR and VIRP-AS approaches. Number of volumes: 
80.000. Number of objects: 1 million. Client access pattern: Random 

This is due to the random accesses to volumes. There is little reuse of VIDs as the 
lookups are completely random, thus there is also little use of the client cache for stor-
ing individual VID lookups. However, for the DNS approach there will still be access 
locality for the entries that store the zone, AS and ASR lookups as there are far lower 
number of these in the system than volumes. This explains why DNS benefits from a 
larger cache but not the VIRP approaches for this experiment. Thus, even for modest 
cache sizes, the performance of the DNS approach is comparable to that of VIRP. 

6.3 Summary of simulation results 
Our simulation shows that VIRP with ASR level aggregation outperforms all other ap-
proaches we compared against. The drawback with the VIRP approaches is that they 
require protocol modifications to the existing routing infrastructure. The DNS ap-
proach, on the other hand, can be deployed on existing infrastructure. Its performance 
is comparable to VIRP for reasonable client cache sizes even when the locality is poor. 
For reasonable cache sizes, the type of the object distribution has lesser effect on the 
client perceived latency. In general, we believe that the deployment of the DNS ap-
proach is preferable as its performance is comparable to the VIRP approaches, while 
using existing infrastructure.  

7 Related Work 

Existing distributed storage systems, such as AFS [13, 14], are designed for deploy-
ment in campus environments. These systems maintain a volume location database 
(VLDB) to track the servers in the system where volumes reside. For example, AFS 
maintains a VLDB for every “cell” of the system. The VLDB is typically replicated on 
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two or more Volume Location Servers, for availability reasons. An AFS client within a 
cell is manually configured with a list of Volume Location Servers that it can contact to 
resolve the volume location. This is not a feasible choice for large-scale geographically 
dispersed networks such as the Internet. Also, AFS does not provide any mechanisms 
by which file servers can locate the logical volumes they are assigned to; this informa-
tion is hard-wired in the servers’ configuration. 

Volume managers such as that of Veritas [25],[26] and storage virtualization systems 
[27] aggregate multiple, disparate physical storage resources using the volume abstrac-
tion. These solutions are applicable to  small-scale systems, a single SAN and a single 
data center. Neither they provide service for hosts in the network to discover their as-
signments nor they allow clients to resolve the owners of logical volumes. 

Techniques used by SSPs such as Scale8 [1] are not published. Karamanolis et al. [14] 
describe mechanisms by which a file server keeps limited information about the peers 
that the logical volumes under its custody have references to. Their proposal is primar-
ily an optimization of our DNS approach, where caching is used at the file server. 

8 Conclusion 

Storage is increasingly becoming a commodity resource shared in global scale. The 
emerging business model of outsourcing storage (or its management) to third-party ser-
vice providers amplifies this trend. In this context, storage resources are virtualized and 
shared by means of logical volumes. This paper addresses the problem of locating and 
accessing logical volumes in global infrastructures, as those of Storage Service Provid-
ers or large corporations.  

The paper briefly describes ways to assign computational resources (servers) to vol-
umes and how this mapping is performed in various system models. We then focus on 
mechanisms for clients to locate and access logical volumes, in a very large, dynamic 
infrastructure. That is, locate the servers that provide access to specific volumes. In en-
vironments of the scale and volatility required in a “resource economy”, a centralized 
volume location database does not provide a satisfactory solution. First, it does not 
scale sufficiently (e.g., for tens of thousands of volumes); second, we cannot expect a 
centralized “knowledge” of the entire system’s configuration. 

The motivation for the work presented in this paper was to investigate solutions that are 
based on well-understood and provably scalable mechanisms. In that spirit, two ap-
proaches are proposed to address the problem. The first is based on existing DNS infra-
structure and protocols to resolve hierarchical volume identifiers. The second proposes 
extensions to existing BGP routing protocols to efficiently locate host servers of vol-
umes.  

Our initial assertion was that the BGP-based approach would perform better than the 
DNS approach. However, experimental results based on simulations indicate that even 
for modest volume-id caching on the clients, the benefits of BGP are negligible. More-
over, the DNS approach is based completely on existing protocols and it is not intrusive 
to the existing infrastructure. So, its deployment would be straightforward. On the other 
hand, the BGP approach requires extensions to existing protocols and routing table 
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management, making it much harder to be deployed in a real environment. The latter is 
not justified by the marginal performance benefits this approach offers. 
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Abstract 
Anticipating an onslaught of data in research, administrative, and academic computing, 
Indiana University (IU) undertook in 1998 the ambitious task of architecting a massive, 
distributed storage infrastructure to meet its long-term storage needs.  The task, now 
nearly complete, has resulted in the institution of the High Performance Storage System 
(HPSS), a hierarchical storage management (HSM) system, augmented by the Distributed 
Computing Environment Distributed File System (DCE DFS) acting both as a file system 
front end to HPSS and as a common file system (CFS) for IU campuses.  Using 
gateways, IU's distributed storage system today currently offers a user on its eight 
geographically distributed campuses a capacity for securely storing and accessing nearly 
200 Terabytes of data from any networked (Windows, Mac, or Unix/Linux) desktop 
equipped with a web browser.   
 
HSM systems such as HPSS have traditionally been used by high-end users at large 
research labs (for example Los Alamos, Livermore, Sandia, Brookhaven National Labs in 
the U.S. and at CERN in Europe), at supercomputer centers (for example the San Diego 
Supercomputer Center), and at government agencies such as NASA.  IU’s installation is 
unique in two respects. It is the first production HPSS that is geographically distributed 
over a wide area network (WAN).  Second, we have made available a high-end storage 
system in an academic setting not only to traditional, high-performance research users 
(for example astronomers, physicists, chemists, etc.), but also more generally (to users in 
economics, fine arts, apparel design, music, libraries, life sciences, etc.). 
 
1   Re-centralization of Storage 
Why build a centralized data storage system when typical personal computer hard disks 
today offer tens of gigabytes of storage at a very low (acquisition) cost?  While it is 
certainly true that the availability of cheap, abundant personal storage capacity in the 
early nineties started a trend toward de-centralization of storage (from a highly 
centralized mainframe era), this trend is slowing.  Researchers on university campuses a 
decade ago found to their delight that, for the most part, they were able to acquire 
(through grants) the resources necessary to store their data locally, on personal 
workstations or on servers in their offices or in departments.  However, their initial 
enthusiasm soon dissipated when the high, after-purchase cost and effort of ensuring the 
integrity, protection, and long-term storage of data became apparent.  As hard disk drive 
sizes have swelled to gigabytes and then to tens of gigabytes, backups have become 
increasingly costly, even painful. Also, enterprise-wide, the need for protecting 
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institutional intellectual assets (in the form of research and other data created by users) 
has grown progressively stronger over the past decade, forcing many institutions to 
reconsider centralizing data storage. 
 
2   Infrastructure Choices 
The design of a storage infrastructure ultimately depends on a number of factors, chief 
among which are a) the amount of data to be stored, b) user data access patterns, and c) 
the available budget.  With disk prices continuing their free fall, the storage industry 
seems to have agreed on storage area networks (SANs) to provide redundantly configured 
disk-based storage.  However, SANs or alternatives that utilize spinning disks alone are 
simply not cost effective in building petabyte class data repositories at the present time. 
This leaves us with tapes and with HSM technology. The largest data repositories in the 
world are thus built using HSM systems. The tape to disk price ratio per megabyte of 
storage (especially at the high end) still favors tape over disk.  
 
In a traditional HSM system, data bits are migrated seamlessly (from a user's perspective) 
from finely tuned, fast but (relatively) small disk caches (ours is a TB) to massive tape 
libraries (again, ours offers 200TB) when unused for a period of time.  Metadata resides 
on disk forever (and is backed up carefully and redundantly). The user pays a price for 
having easy access to terabytes of data in the form of tens of seconds to possibly minutes-
long delay in retrieving data bits that have migrated to tape.  However, this appears to be 
acceptable for the majority of academic users who are happy to have access to massive 
storage capacities normally outside the scope of their individual or departmental budgets.   
 
Armed with this information, we began looking for a HSM solution that provided a) 
long-term vendor viability, b) excellent hardware and software support, c) scalable 
performance, d) ease of access (preferably via a file system), and e) the ability to 
distribute software and hardware components geographically.  At the conclusion of our 
request for proposal (RFP) process, only one contender remained, namely the High 
Performance Storage System.  The HPSS[1] is the result of a fruitful collaboration 
between a number of government labs, academia, and IBM.  It is not a vended solution in 
the usual sense; one pays instead a membership fee to join the HPSS collaboration.  Each 
member gains access to the source code and is free to modify it within the mechanisms 
provided by the collaboration.  Excellent software support is also included.  Another 
attractive feature of HPSS is its ability to present a file system interface to data stored on 
tapes via DCE DFS[2], a distributed, scalable and secure file system. 
 
At the high end, campus projects needing massive data storage at IU included candidates 
such as next generation high-energy physics experiments, with the potential to generate 
petabytes of data each year. With possible analysis times extending to decades, protection 
against software and hardware obsolescence is paramount.  We felt that HPSS fit these 
needs and our environment well, by giving us long-term control over our destiny.  [HPSS 
is also the HSM system of choice at some of the world's largest data repositories (for 
example SDSC, Brookhaven National Labs, CERN, etc.).] 
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Finally, while a tape-based system is ideal for archiving large files (tapes perform best 
when streaming), many campus users needed persistent, disk-based storage as well.  In 
the past, this need was met (though inadequately) by the Novell Netware file system. By 
1999 however, the future of Novell itself was in question and the existing Novell 
infrastructure was in urgent need of repair or replacement.  With DCE DFS software 
already installed for HPSS purposes, it was natural to use it in lieu of Novell.  DCE DFS 
is one of the most highly scalable and distributed file systems in use currently in the 
industry, to deliver high-end, secure file service.   However, since DCE DFS clients are 
available only for a number of Unix flavors and for Windows NT4, it was clear that 
appropriate gateway servers would be needed to extend DCE DFS to the pervasive base 
of Windows and Mac desktops and servers on campus. 
 
3   Building IU’s Distributed Storage System 
Our service design included campus users (using their personal workstations or 
departmental servers or our supercomputers) who either required massive, archival 
storage and/or who needed traditional, disk-based storage. A major design goal for us 
was also to provide storage ubiquitously, either via the web or via a file system front-end.  
Though these methods do not provide the highest performance, they were targeted for a 
non-savvy computer user due to the simplicity of use. 
 
The majority of our users were located on two of IU’s eight campuses, namely IU 
Bloomington (IUB) and IU-Purdue University at Indianapolis (IUPUI), located around 
fifty miles apart in central/south-central Indiana. Since the intercampus bandwidth 
(45Mbps) was insufficient to move massive amounts of data between campuses, we 
decided to experiment distributing IU’s HPSS hardware and software across the two 
campuses.  While the metadata engine remained at IUB, the actual user data was to reside 
where the user was located physically, either at IUB or at IUPUI.  The idea was to use the 
intercampus link efficiently, to carry metadata traffic only.  Users were to access their 
data over their local LAN at each campus via third party transfers.  Extensive tests in 
partnership with IBM validated the idea and the experiment transformed into the first 
production instance of a remote HPSS mover at IUPUI in late 2000. 
 
The file system front-end to HPSS is configured via “migrating” DFS servers.  Data 
placed into HPSS via DFS arrives first in the DFS server disk caches, and later migrates 
to HPSS disk caches via a bi-directional DFS-HPSS link.  The migrating DFS is thus a 
dedicated, external subsystem to HPSS.  Static (i.e. non-migrating) DFS was also 
configured using separate DFS servers, with no link to HPSS, to provide the “Common 
File System” (CFS) service to the masses (directly, via DFS clients, and via SMB, 
Appleshare IP, and web gateways).  Security for both HPSS and for CFS is provided 
through DCE (based on Kerberos 5). 
 
We configured our core HPSS on a dedicated IBM RS/6000 SP located at IUB.  This 
allows the eleven PowerPC “Silver” thin and wide SP nodes (which run core HPSS 
servers, disk/tape movers and migrating DFS servers) to communicate over the IBM SP 
switch at 130MB/s.  Our supercomputer (another IBM SP) users are able to transfer data 
to/from HPSS using an ASCEND router at better than 100MB/s.  A terabyte of IBM’s 
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serial storage array (SSA) disk attached to the eleven nodes forms the HPSS and 
migrating DFS disk caches. We use IBM’s Magstar (3590E) tape drives in an IBM 3494 
tape library and Storage Technology Corporation’s 9840 “Eagle” tape drives in a STK 
9310 tape library to store HPSS data at IUB. Remote HPSS disk and tape movers and a 
DFS server are configured on an IBM H70 server at IUPUI in Indianapolis.  We have 
roughly 1TB of UltraSCSI RAID5 disk configured on the H70 as HPSS and migrating 
DFS disk caches.  A number of IBM’s Magstar drives inside an IBM 3494 tape library 
are SCSI-attached to the H70 at IUPUI. 
 
HPSS is accessed in a high-performance mode via especially written Unix clients or more 
easily via FTP, DFS or via the web.  We currently have around a thousand users 
distributed across various IU campuses, with roughly 55TB of data stored in HPSS. 
 
IU’s non-migrating DFS (or CFS) runs at IUB on several IBM’s low-end B50 servers 
with IBM’s UltraSCSI RAID5 arrays.  Five Sun E220R servers run Samba[3], 
Netatalk[4], and Apache-SSL[5] servers which allow Win9x, Mac, and Linux users to 
access DFS from any networked desktop.  The gateways are accessed by users as a 
single, round-robin DNS name. User authentication occurs securely (via modifications to 
Samba, Netatalk, and Apache server code[6]) directly against DCE.  This allows no name 
space information to be maintained on the gateways, thus helping load balance and scale 
the service up as appropriate, without user impact.  The non-migrating DFS servers and 
the gateways together form our CFS environment which is available to all campus users, 
either as a mapped drive under Windows, an an Appleshare IP volume on Macs, via 
smbmount or a native DFS client under Unix (or smbfs under Linux), and via the web.  
We are serving roughly 25,000 CFS customers currently with 250GB of data stored and 
backed up regularly. 
 
4  Future 
We are currently working in partnership with IBM to investigate developing an interface 
between IBM’s high-performance general parallel file system (GPFS) and HPSS.  This 
could enable high-speed, parallel, file system based data transfers between Linux clusters 
and HPSS (these clusters are currently served largely via low-performance NFS).  We are 
also expanding the HPSS infrastructure at our Indianapolis campus (to nearly 400TB 
capacity) to support life sciences research and will start tests soon thereafter to mirror all 
HPSS data in real time across i-light[7], a newly installed high-speed optical fiber 
infrastructure between IUB and IUPUI.  This should provide us with better protection 
against a disaster at either site.  Finally, CFS is being extended to the IUPUI campus and 
will replace the local Novell infrastructure during 2002. 
 
5  Conclusions 
Indiana University is one of the few academic institutions to successfully anticipate and 
to build an ambitious infrastructure to provide massive data storage to its users.  Using 
HPSS, a highly scalable and distributed hierarchical storage management system, along 
with DCE DFS and SMB, AppleShare IP and web gateways, a campus user at IU can 
store and access terabytes of data from their desktops.  We have also found that it is 
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possible to implement and to offer a high-end storage system to the masses, with 
significant cost savings over the long run.   
 
We are happy to share our knowledge and experiences with anyone who is interested.[8] 
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Abstract 
Holographic technique offers high-density data storage with parallel access and high 
throughput. Several methods exist for data multiplexing based on the fundamental 
principle of volume hologram Bragg selectivity. We recently demonstrated that spatial 
shift selectivity associated with a random (amplitude-phase) encoding of the reference 
beam is an alternative method for high-density, high capacity data multiplexing. In this 
report we show some characteristics of the random encoded reference beam hologram 
selectivity1. 
 
1   Introduction 
Volume holographic memory allows for high throughput data storage and retrieval. 
Different techniques for data multiplexing have been explored, including those based on 
angular [2] and spectral [3] selectivity of volume holography, spatial encoding of the 
reference beam [4] or a combination of these methods [5]. The combination of reference 
beam phase encoding with spatial-shift multiplexing was shown to be an efficient 
approach for high-density holographic information storage [6,7]. The correlation effects 
at volume hologram recording and reconstruction with random encoded (speckled) 
reference beam came out as the part of the analysis of the holographic laser beam 
corrector [8]. A similar technique using a reference beam comprised of many plane 
waves (or a spherical wave) was suggested and experimentally demonstrated [9]. In this 
report some characteristics of volume hologram with random-encoded reference (RER) 
beam are discussed. 
 
2   Theoretical Analysis 
In our analysis we consider a volume hologram recorded by a plane wave signal beam 
So(r) and a RER-beam, Ro(r), with a divergence δθSP. By intersecting at an angle θo these 
two beams form a hologram with average grating spacing Λ = λ/sin(θo), assuming an 
incidence angle θRo = 0. In the first Born approximation, the diffracted beam amplitude 
S(r), when reconstructed with RER-beam different from the recording one i.e. R(r) ≠ 
Ro(r), can be described as [10]: 

∫∫∫ −π
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oR)r(oS)r( ∝δε is the recording media permittivity modulation and V is the 

volume of the hologram with thickness T. Eq. (1) is valid if T >> λ/(δθSP)2, i.e. exceeds 
the longitudinal speckle size.  
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We introduce now the normalized diffracted beam intensity IDN(∆) as the parameter to 
describe the selectivity properties of RER-beam hologram: 

∫ ∫∫ ∫ ∫
∞+

∞−

∞+

∞−
⊥

⊥

=∆

⊥
⊥ ×








∆−×











 ∆=∆=∆
⊥

.qd)q(PTqdzdq
d

nikexp)q(P
d2
nikexp

I
)(I)(I 22

D
2

2
T

0

2

dh

o2
D

dh

2
o

)0(D

D
DN

rrrr
      (2) 

Here the measured diffracted beam intensity 
ID(∆) is normalized by its peak value at zero 
shift ID(∆=0). 
 
It follows from Eqn. (2) that any spatial 
mismatch between the hologram and 
reconstructing beam R(r) should result in a 
decline of the diffracted beam intensity.  
Figure 1 shows the fall-off in IDN(∆⊥) that 
occurs for lateral shift ∆⊥. This figure for 
comparison includes also dependence 
IDN(∆⊥) if calculated from a standard 
correlation function ICOR(∆⊥) from the 
statistical analysis of the speckle pattern. 
Comparison of these two curves clearly 
illustrates the impact of the spatial (volume) interaction on shift selectivity of the RER-
beam hologram. 
 
3  Experimental Study  
For experimental verification the RER-beam holograms were recorded in 2.3-mm-thick 
Fe:LiNbO3 crystal. In a first set of the experiments the crystal was set onto an XY 
computer controlled positioning table (shift accuracy 0.025 µm in X-Y plane). A 1 cm 
diameter CW argon laser beam (λ = 515 nm, P = 40 mW/cm2) was used as the coherent 
light source for hologram recording. The laser beam scattered by the ground glass 
diffuser is then picked up by a large aperture lens (f# = 1.4( forming a subjective speckle 
pattern in the recording plane. By changing the relative spatial position of the recording 
scheme elements allows for simple modification of average lateral speckle size <σ⊥>. 
The RER-beam intersected with the plane wave signal beam at an angle of θo = 30o in air 
(θRo = 0ο and θSo = 30ο).  
 
The diffraction efficiency of the hologram in its original position (∆⊥ = 0) was 
approximately 10-3. After the hologram was recorded, a lateral shift ∆⊥ was introduced to 
evaluate the sensitivity of the reconstruction beam intensity upon lateral shift. A typical 
example of such operation is shown in Figure 2 for two orthogonal in plane (X-Y) shift 
direction (a) and for several values of the speckle size <σ⊥>. The solid line in Figure 2 
shows the behavior for the angular selectivity that would operate the diffracted beam 
intensity at identical conditions. Following data from Figure 2 the parameter of shift 
selectivity can be introduced for RER-beam hologram by analogy with angular selectivity 
of the plane wave hologram. It is evident also that speckle-shift selectivity has a very 
smooth character and contrary to the angular Bragg selectivity has no side-lobs in course 
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Figure 1. Diffraction beam intensity IDN(∆) as a 

function of lateral ∆⊥ shift. 
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of displacement. 

 
3.1 Data recording-retrieval. 
To verify experimentally the proposed data storage-retrieval concept, a breadboard 
system was constructed. A model GSL150/S CW diode-pumped Nd:YAG laser with 
output power 200 mW at λ = 530 nm was used as the light source. The SONY model 
LCX 026AL SLM with window size 2.3 x 2.3 mm and pixel size 22.5 x 22.5 µm was 
used to form a signal channel. The SLM was controlled by a PC that also had a National 
Instruments PCI-1407 single channel frame grabber for image retrieval. The data retrieval 
was arranged with the CMOS detector (pixel size 11.0 x 11.0 µm).  

The detector location and limiting aperture were adjusted to produce the best SLM image 
onto a CMOS detector array. The pixel pitch of the CMOS detector was 12 µm x 12 µm, 
while that of the SLM was approximately 23 µm x 23 µm. The imaging optics was 
adjusted to produce a magnification of 1 SLM pixel to 2 CMOS pixels. Tests were also 
conducted using a CCD detector array with a pixel pitch of 8.4 µm x 9.8 µm in place of 
the CMOS. The magnification in this case was approximately 1 SLM pixel to 2.25 CCD 
pixels in one axis and 1 SLM pixel to 2.6 CCD pixels in the other. 

Once the SLM and detector were properly aligned, tests were conducted in which the 
data area contained a known, random code and was projected onto either the CMOS or 
CCD detectors. Each bit of the code was represented by a value of either no attenuation 
or full attenuation over an area of the SLM. The exact scaling was calculated during each 
test by the program based on the location of the four dark corners generated by the SLM 
for alignment.  

To test the reliability of the system using the initial test parameters, a series of known, 
random codes were written to the SLM and read back by the detector.  For each test, the 
code read by the detector was converted back into a digital value and compared to the 
original code written to the SLM. Experiments in which several hundred codes were 
written and read were conducted and the location of bits that contained errors was 
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Figure 2. Shift selectivity of RER-hologram (a) and its dependence upon average 
speckle size <σ⊥> (b). 
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tracked. Typical results of the random code generation and optical read-out from the 
CMOS detector are shown in Figure 3, where both original (a) and retrieved (b) fields are 
presented. 

a) b)
 

Figure 3.  Original (a) and retrieved (b) data-page. 
 
The system was found to be generally reliable; however, some data bits proved to be 
considerably more prone to errors than the rest.  The system also seems to be extremely 
sensitive to slight changes in alignment. However, at correct alignment of the optical tract 
the performed tests with about 103 cycles allowed us to get the bit-error rate (BER) no 
higher than three for the entire field of the detection area. 
 
3.2 RER-beam storage in reflection geometry.  
As a part of the recording process optimization, we studied the possibility of data 
multiplexing using a reflection holography scheme. In this geometry the signal and 
reference beams are illuminating the recording medium from opposite directions, and in 
this way the reflection grating is formed. The essential benefit of the reflection geometry 
over the transmission one is the possibility of building a more compact memory module.  
 
Experimentally study of the reflection mode geometry operation the speckle-encoded 
hologram was recorded with angle θR = 165o between reference RER-beam and object 
beam. Average speckle size of RER-beam in this experiment was <σ⊥> ≈ 7 µm. As it was 
in transmission geometry the RER-beam was normal to the front surface of LiNbO3 
crystal, and C-axis (optical axis) of the crystal was normal to its front surface. The object 
beam had an incident angle 30o, propagating from the opposite direction.  
 
No anomalies in the shift selectivity behavior have been observed in this geometry as 
compared to the transmission one, and a typically measured dependence of the 
normalized diffracted beam intensity upon spatial decorrelation between recorded and 
reconstruction positions of the RER-beam (shift selectivity) is shown in Figure 4. It is 
worth of noting at this point that the angular selectivity of the plane wave hologram 
recorded in a similar conditions was δΘ > 5o that should result in extremely low storage 
density, while RER-beam selectivity provides a very good results. 
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4. Summary and Conclusion 
In summary, the random encoded reference 
beam holographic recording demonstrates 
extremely high selectivity and therefore high 
data storage. This selectivity is based on the 
effects of spatial volumetric decorrelation 
between the recording and retrieving 
reconstruction field. Contrary to angular or 
spectral selectivity of the volume hologram, 
the two mechanisms that are traditional used 
for data multiplexing, the RER-beam 
holograms can be made free from sinc-type 
intensity modulation at its reconstruction. That 
should result in a much lover cross talk for this 
type of multiplexing. We demonstrated that the 
RER-beam hologram operates equally well in 
both transmission or reflection geometry. These features makes RER-beam hologram 
architecture attractive for building compact data storage system with ultra-high density 
and capacity.  
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Abstract 
The iSCSI protocol provides access to SCSI devices over a TCP transport. Using the 
iSCSI protocol enables one to build a Storage Area Network using standard Ethernet 
infrastructure and standard networking management tools. This paper outlines how we 
implemented a family of iSCSI initiators on a common core. The initially supported 
initiators were on the Windows NT and the Linux Operating Systems. Code for a version 
of the Linux iSCSI initiator has been released as Open Source. Initial testing indicates 
that iSCSI can provide reasonable performance relative to traditional storage 
environments. 
 
1. Introduction 
 
1.0 SANs and iSCSI 
Storage Area Networks (SANs) provide a way for multiple hosts to access a shared pool 
of remote storage resources. Traditional SANs are built using FibreChannel technology 
[1] running the FCP protocol to carry SCSI commands over the FibreChannel network. 
Two separate network infrastructures are needed in an environment that uses a Local 
Area Network (LAN) for usual network activity and a SAN for shared remote: an 
Ethernet (or equivalent) infrastructure (running TCP and similar protocols) for usual 
LAN activity, and a FibreChannel infrastructure (running FCP protocol) for the SAN 
activity. iSCSI [2] is a protocol that carries SCSI commands over the TCP protocol [3]. 
iSCSI enables access to remote storage devices using TCP over standard LAN 
infrastructures. Using iSCSI dispenses with the need for a separate FibreChannel 
infrastructure and the need for a separate set of FibreChannel management tools. The 
difference between a traditional SAN and a possible iSCSI setup is depicted in the 
following figure. 
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1.1 iSCSI Overview 
The iSCSI protocol [2] is a mapping of the SCSI remote procedure invocation model (see 
SAM2 [4]) over the TCP protocol [3]. Communication between the initiator and target 
occurs over one or more TCP connections.  The TCP connections carry control messages, 
SCSI commands, parameters and data within iSCSI Protocol Data Units (iSCSI PDUs).  
The group of TCP connections that link an initiator with a target form a "session". The 
SCSI layer builds SCSI CDBs (Command Descriptor Blocks) and relays them with the 
remaining command execute parameters to the iSCSI layer. The iSCSI layer builds iSCSI 
PDUs and sends them over one of the session's TCP connections. 
 
1.2 Design Goals 
We designed and implemented a family of iSCSI initiators. Initial testing was performed 
against an IBM TotalStorage 200i disk controller using a standard 100Mbit Ethernet 
network connection. A major design goal of our initiators was to allow for multiple 
Operating Systems to work on the same common code base. Each operating system has 
its own set of interfaces for the SCSI subsystem and for its TCP transport. However, the 
implementation of the iSCSI specification should be common to all operating systems. 
When we upgrade to a different level of the iSCSI specification, only the common core 
needs to change, while the OS-dependent code should remain more or less intact. 
 
Additional design considerations of our initiators included: 
- Allow the initiator to simultaneously use devices from multiple target machines. 
- Utilize multiple TCP connections between and iSCSI initiator and target.  
- Utilize multiple processors if running on an SMP (Symmetric Multiprocessor). 
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1.3 Design Assumptions 
The common core was designed and written using some basic assumptions about the 
Operating System (OS) on which it would be run. We assumed that the base Operating 
System would have the following features: 
- Support for multiple threads in the kernel. 
- Reading/writing from TCP can be easily abstracted into a single read/write 

function call. 
- Some SCSI commands might be (re-) issued from inside the scsi completion 

routine, thus possibly running at some priority level for which we may not block. 
- Task Management requests may arrive at some priority level, and hence we must 

provide an implementation that does not block, if requested. 
 
We also had in mind a certain layering of the SCSI subsystem that seems to be prevalent 
in a number of Operating Systems. In both the Linux and Windows NT operating systems 
there are 3 layers to the SCSI subsystem. There is one high-level (class) driver for each 
type of SCSI device: disk, tape, CD, etc. There is a mid-level (port) driver that has 
common code for all types of devices, which takes care of command timeouts and 
serialization of commands. The low-level (miniport) driver is specific to an adapter, and 
must provide a queuecommand() or dispatch() routine that is used by the mid-level 
driver. This 3-level layering is essentially the model that is presented in the Common 
Access Method [5]. 
 
 
2.   Implementation Details 
 
2.1 Data Type and Function Abstractions 
In order to build a common core, we abstracted the basic Operating System dependent 
data types and services that we would need to use, and defined these individually for each 
Operating System on which we implemented the iSCSI initiator driver. The basic data 
types that we defined are described here with their corresponding Linux (2.2) definitions. 
 
typedef spinlock_t  iscsiLock_t; /* basic spin lock */ 
typedef struct wait_queue*  iscsiEvent_t; /* sleep event */ 
typedef uchar   iscsiIrql_t; /* interrupt level */ 
typedef struct scsi_cmnd  SCB_t;  /* SCSI Command Block */ 
typedef struct {  /* TCP connection descriptor */ 
 struct sockaddr_in sin; 
 struct socket  *sock; 
 iscsiEvent_t  event; 
} iscsiSock_t; 
 
The basic services that must be provided by each Operating System and their 
corresponding Linux implementation are: 
 
#define iscsiOSmalloc(size) kmalloc(size, GFP_KERNEL) 
#define iscsiOSlock(lock, irql) spin_lock_irqsave(lock, (*irql)) 
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#define iscsiOSunlock(lock, irql) spin_unlock_irqrestore(lock, irql) 
#define iscsiOSsleep(event) sleep_on(event) 
#define iscsiOSwakeup(event) wake_up(event) 
 
The common core uses these macros, which enable us to write code that is common to 
multiple platforms. The common core must also call some functions to perform TCP 
operations. Their prototypes are given below. 
 
s32 iscsiOSreadFromConnection(iscsiSock_t *sock, void *buffer, u32 len, u32 offset); 
s32 iscsiOSwriteToConnection(iscsiSock_t *sock, void *header, u32 headerLen, void 
*buffer, u32 len, u32 offset); 
s32 iscsiOSmakeConnection(u32 addr, u16 portNum, iscsiSock_t *isock); 
void iscsiOScompleteCommand(SCB_t *scb, u32 status); 
 
The core provides a number of routines that the OS-dependent layer can call. The 
prototypes of the main core functions are given below. 
 
s32 iscsiCoreCreateSession(u32 addr, u16 portNum, u32 nConnections, uchar 
*loginParams, u32 loginParamsLen); 
s32 iscsiCoreEnterCmdInQ(SCB_t *scb, void *cdb, u32 cdbLen,  u32 sessionhandle, 
iscsiLUN_t lun, void *data, u32 datalen, u32 flags); 
u32 iscsiCoreResetDevice(u32 sessionHandle, SCB_t *scb, iscsiLUN_t lun); 
 
The OS-dependent code calls iscsiCoreEnterCmdInQ() for each command that it wants to 
send to the target. The core then takes over and processes the command, sending it to the 
target, receiving a response from the target, and reporting the results back to the OS-
dependent code by calling the iscsiOScompleteCommand() function. 
 
2.2 Common Core General Structure 
For each session established by the initiator (i.e. for each target), the initiator maintains a 
queue of items that must be sent to the target. We call this queue the command queue. 
The initiator also maintains a dedicated command queue handler thread to read items 
from this queue and to send them to the target. 
 
The initiator maintains state of each command that has been sent to a target. This state 
information is saved in a table, indexed by an Initiator Task Tag. The target may send 
status or R2T (Ready to Transfer) PDUs to the initiator relating to a particular command. 
The Initiator Task Tag is used to easily look up the relevant information in the table. 
 
For each TCP connection (even if we have multiple connections for a single session) the 
initiator maintains a dedicated thread to read from that TCP connection. The use of 
separate threads to read from each TCP connection and to send out messages allows us to 
better exploit the CPUs while waiting for data to arrive or be sent over a network 
connection. A read thread posts a read request on its TCP connection to receive an iSCSI 
header. The thread waits until data has arrived and has been placed in its buffer. The read 
thread parses the iSCSI header to determine how much additional data follows the 
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header. The read thread then posts a read request for the data of specified length, 
providing an appropriate buffer into which the data is to be placed. The read thread then 
performs whatever processing is needed to handle the PDU.  
 
2.3 Implementation Lessons 
In this section we briefly discuss some problems we encountered and lessons we learned 
in our implementation. 
 
Windows NT expects command completion to occur from within an interrupt handler. 
Since we did not have any real hardware of our own, and all of our internal threads ran at 
regular priority, we broke a basic assumption of the Windows NT SCSI subsystem. We 
had to artificially create an interrupt in order to get the Windows NT SCSI subsystem to 
complete the processing of commands that were handled by our driver. 
 
Linux also expects commands to be completed in a type of interrupt handler. A certain 
lock must be obtained and interrupts must be blocked when calling the Linux SCSI 
command completion handler. 
 
In Linux, SCSI commands might be issued from within an interrupt handler. The call to 
iscsiCoreEnterCmdInQ() might therefore be called from within an interrupt handler, and 
any locks that we obtain in that routine must be safe to obtain and contend with an 
interrupt handler. It is therefore necessary to block interrupts whenever we obtain locks 
that may also be obtained at interrupt level inside the iscsiCoreEnterCmdInQ() function.  
 
There is an inherent problem in mounting and unmounting iSCSI disks automatically 
upon reboot. In general, when the system first tries to mount its file systems, the network 
isn't yet up, thus preventing us from reaching our iSCSI disks. Also, the disk cannot 
automatically unmount cleanly during shutdown since by the time the system tries to 
sync its disks the network may already be gone. 
 
2.4 Performance 
We performed some preliminary measurements of iSCSI performance versus a directly 
attached IDE disk. We ran the IOTEST benchmark [7] on Linux for different sized block 
transfers and compared the results. The following graph shows the relative number of 
read operations between the iSCSI and local IDE disk. 

0.5 1 2 4 8 16 32 64 
Kb  

-20% 
-10% 

0% 
10% 
20% 
30% 
40% 
50% 

% 

Improvement of iSCSI over local disk 

 



302 

 
For small data transfers iSCSI outperformed the local IDE disk by about 30%, despite the 
network overhead. This is due to the higher performance SCSI disks on the TotalStorage 
200i target. Using the TotalStorage 200i SCSI disk locally outperformed iSCSI by about 
3% for small transfers. For large data transfers, the network overhead started to take on a 
larger and larger impact, causing the iSCSI performance to be up to 12% worse than the 
local IDE disk. This is apparently due to the numerous interrupts needed for the 
packaging and processing of many small TCP packets for a large data transfer. This 
phenomenon should be alleviated when using Network Interface Cards (NICs) that 
offload the TCP processing, thereby reducing the number of interrupts that must be 
handled by the host. 
 
3. Related Work 
Network Storage is becoming more and more common, allowing remote hosts to more 
easily access remote and shared data. A number of studies have been performed that 
show that IP attached network storage can provide reasonable performance relative to 
FibreChannel and other storage environments. See, for example, [8] [9] [10].  
  
Other early iSCSI initiator drivers have been made available as Open Source [6]. Some of 
these early implementations support a fixed target with a single TCP connection. Some of 
these implementations were written and tested for uniprocessors, and could not take 
advantage of the multiple processors in an SMP. Our implementation has the distinction 
of allowing multiple targets, multiple TCP connections within each session to a target, 
and the ability to fully exploit SMP machines. The performance achieved on a 
uniprocessor by the other software iSCSI initiator implementations that we tested 
(against the same target) were essentially the same as for our initiator. 
 
4. Future Work 
A version of our Linux initiator has been released as Open Source [11]. We continue to 
revise our driver to keep up with changes in the iSCSI specification as it evolves. Over 
time, we are adding additional features that are defined in the specification. We intend to 
perform comprehensive performance measurements and adjust our driver accordingly. 
 
5. Conclusion 
We implemented a family of iSCSI initiators utilizing a common core. We outlined our 
basic design objectives and how we implemented our initiators. When we upgraded to a 
newer version of the iSCSI specification, we were able to perform the necessary changes 
to the common core to correspond to the new iSCSI specification, while the OS-
dependent parts of the code remained essentially unchanged. Our implementation allows 
multiple targets, multiple TCP connections within each session to a target, and the ability 
to exploit SMP machines. Using the IBM TotalStorage 200i target, iSCSI significantly 
outperforms the local IDE disk for small data transfers, but lags behind IDE for large data 
transfers, apparently due to the extra overhead of network  interrupts. 
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Abstract 
Many large-scale data-intensive applications need to use tape library to manage large data 
sets, thus it is critical to study the online access techniques of tape library. The focus of 
this paper is on efficient tape-resident jobs scheduling, which is the key technique for 
improving performance of tape storage systems. We present several scheduling 
algorithms for tape-resident jobs, discuss the effectiveness of scheduling policies under 
cache-limited and cache-unlimited condition, and show the results of simulation 
experiments.  
 
1 Introduction 
Many data repositories are expected to become huge, possibly counted by terabytes in 
size. Examples of such repositories include terabyte-level Telecommunications Call 
Detail Warehouse, petabyte-level Digital Libraries, exabyte-level National Medical 
Insurance Records, Zettabyte-level Spatial and Terrestrial Database and video and Audio 
Data Archives[1][2]. The management of such large data sets requires the use of tertiary 
storage, typically implemented by using tape libraries. As a result, accessing, analyzing, 
mining, and other data-intensive applications can comprise of many tape-resident jobs 
that retrieve either wholly, or in part, data from tapes. 
 
Tape library is characterized by (1) the use of removable tape media and a robot arm, (2) 
sequential access of data, and (3) the performance bottleneck caused by tape access. 
Tape-resident job usually consists of more than one request, each of which must be 
completed before the job is finished, and uses disk cache space to store the data of its 
completed requests. To improve the performance of tape-resident jobs, we have to 
consider the following two problems -- the accessing latency of tape library, and the 
capacity limitation of disk cache for storing the retrieved data from tapes. 
 
Previous studies mostly focus on the request scheduling of tape library to improve 
performance of robotic storage library[3][4][5][6]. But our goal is to schedule the jobs 
consisting of a set of requests to minimize the completion time of the whole job. A study 
closely related to ours is the one in which the scheduling problem of tape-resident jobs is 
reduced to well-known flow-shop scheduling[7]. However, it doesn’t consider the 
optimal scheduling of tape libraries. 
 
In this paper, we will introduce better scheduling strategies for executing tape-resident 
jobs. We will discuss how to improve the performance of tape-resident jobs by optimized 
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I/O performance of tape library, and discuss the effectiveness of scheduling policies 
under cache-limited condition or cache-unlimited condition by simulation study. Section 
2 gives the scheduling problem description of tape-resident jobs. The scheduling 
algorithms will be presented in Section 3 and the simulation results for performance 
comparison of scheduling algorithms will be given in Section 4. Finally, Section 5 
concludes the paper. 
 
2 Problem Description 
A tape-resident job consists of a set of requests, each of which is a read operation for a 
set of continuous blocks on a tape. We assume that the requests are independent of one 
another, that is, requests don’t need to be executed in some forced order. The reason is 
that the access of tape library is much slower than that of disk, if processor begins to 
execute the job before the data involved in by its requests are all loaded into disk cache, 
then the job is possibly blocked for waiting unloaded requests. So we reduce the 
execution principle of tape-resident jobs to a simple form, that is, the job doesn’t begin to 
execute until the data of its requests are all loaded into disk. This assumption means that 
the data of requests may be loaded by any order. The following Fig.1 is the description 
model of tape-resident jobs. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Since a job of several requests may involve more than one tapes, combining jobs that 
access the same media will make system process as much requests as possible in a tape 
schedule. One problem is that if jobs are not properly scheduled, the disk cache may be 
run out quickly. Therefore, it is critical to study the correlation between tape drive 
utilization and disk capacity limitation for tape-resident job scheduling. To do so, we 
consider the following optimization policies when designing tape-resident job scheduling 
algorithms: 

• To improve the I/O performance of tape library 
• To reduce resident time of data of jobs on disk cache 
• To coordinate the input and output throughput of jobs to or from disk cache 

 
3 Scheduling Algorithmic Issues 
We study our scheduling problems under two kinds of restrictive conditions respectively: 
cache-limited and cache-unlimited. The former means the selection of scheduling policies 
must take the available space on disk cache into consideration, and the later assumes that 
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Fig. 1 The description model of tape-resident jobs 
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there is enough space of disk cache for scheduling. We first present five scheduling 
algorithms under the second condition, and then discuss these algorithms with the first 
condition of constraint. The algorithms focus on two key points: tape selection policy, 
and scheduling list creation (a scheduling list is an ordered list of requests for a selected 
tape). 
 
(1) FCFS (First Come First Service). This algorithm services the jobs in the order of 
arrival, and always chooses the tape that the first request in job wait queue accesses to for 
next execution. The scheduling list of selected tape includes all requests that belong to the 
job and access the selected tape. These requests will be executed within one sweep of the 
tape. 
 
(2) Max-EBW (Maximum Effective BandWidth). This policy improves the scheduling 
of tape-resident job in maximizing I/O performance of tape library. It always chooses the 
tape with maximum effective bandwidth for the next execution. The effective bandwidth 
of a tape is defined to be the total number of bytes transferred from the tape divided by 
the number of seconds consumed to perform this tape schedule.  
 
(3) FCFS-PICKUP. This algorithm uses simplest tape selection policy--FCFS, namely, 
it always selects the tape to be accessed by the first request of a job in the wait queue, and 
then the algorithm inserts all requests of other jobs in the wait queue that will access the 
selected tape into its scheduling list, which is called the PICKUP policy for scheduling 
list creation. 
 
(4) DYN-PICKUP. This algorithm has similar tape selection and scheduling list creation 
as FCFS-PICKUP. Besides this, it particularly considers the new arrival jobs. When the 
requests belonging to a new arrival jobs are trying to access the blocks on online tape that 
the tape head will pass over during the current sweep, they will be inserted into the 
running scheduling list. This is the dynamic policy for scheduling list creation. 
 
(5) TUNING-PICKUP. This algorithm makes FCFS-PICKUP scheduling tunable. It 
uses PICKUP intension factor F, which indicates that PICKUP scheduling is only 
applied among the first F waiting jobs in the job wait queue, to tune the scale of 
scheduling list. Obviously, larger F means both larger cache occupation, and quicker 
response time. The selection of proper F value is the difficult point of this algorithm. 
Currently, we determine the F value by simulation experiments. A proper method for F 
value selection will be studied. 
 
Above algorithms have different cache requirement: FCFS needs least cache space; 
TUNING-PICKUP may tune the size of cache occupation by changing PICKUP 
intension factor F; and other algorithms use more cache space than FCFS, but are not able 
to tune cache requirement. The comparison details of above algorithms will be given in 
next section. 
 
4 Simulation Study 
In this section, we give two groups of simulation results, each of which consists of two 
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figures: average response time of jobs and maximum cache requirement of jobs. The 
simulation parameters of tape library are based on Exabyte 220 tape library with two 
Eliant 820 drives and twenty EXABTYE 8mm tapes. In addition, we assume that the job 
arrival is stochastic and follows Poisson distribution. Each job averagely consists of 8 
requests that have the average size of 64M bytes. We also assume that the disk cache 
should at least meet the maximum storage requirement of any job. The jobs are 
independent of one another. 
 
Fig.1a and Fig.1b show response time and cache occupation curves for all algorithms 
except for TUNING-PICKUP. From the graphs we can observe that FCFS has least cache 
occupation but longest response time, and other algorithms significantly improve the 
average response time of tape-resident jobs by optimizing I/O performance of tape library. 
This performance improvement from tape library optimization has an associated cost in 
terms of storage space. The Figure also indicates that FCFS-PICKUP is the best 
scheduling policy. The reason is that it uses FCFS policy to speed up job output from 
disk cache while it takes advantage of PICKUP policy to improve I/O performance of 
tape library. Although the time performance of DYN-PICKUP policy is slightly better 
than that of FCFS-PICKUP, but its cache occupation is much higher than FCFS-PICKUP 
and Max-EBW. Its heavier workload creates proportionally larger storage requirement.  
 

Fig. 1a  Comparison of response time
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Fig.1b Comparison of cache occupation
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The next simulation experiment explores the correlation between response time and 
cache space for FCFS-PICKUP algorithm and TUNING-PICKUP algorithm. We use 
PICKUP intension factor F to tune the size of cache occupation. This is very helpful in 
achieving a reasonable response time for tape-resident jobs when cache space is limited. 
Fig2a and Fig.2b illustrate when properly tuned, the time performance of 
TUNING-PICKUP is close to that of Max-EBW, but its space occupation is significantly 
reduced. 
 
5 Conclusions 
This paper discusses some efficient scheduling algorithms for tape-resident jobs. Our 
contributions include: (1) incorporate optimal I/O scheduling policies of tape library into 
the scheduling of tape-resident jobs so as to improve performance of tape-resident jobs 
by increasing the data throughput of tape library processing; (2) design better algorithm 
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FCFS-PICKUP for cache-unlimited system and TUNING-PICKUP for cache-limited 
system. The future work is to give a practical evaluation method for PICKUP intension 
factor F so that we may simply select factor F value for TUNING_PICKUP algorithm 
according to both workload and cache size. 
 

Fig. 2a  The comparison of response time
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Fig. 2b The comparison of cache
occupation
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Abstract 
 Archival life of MP (metal particles) tape is one of the biggest concerns for mass data 
storage users. The long-term stability of an MP tape is studied in terms of lubricant and 
binder systems. MP formulation tape that has been used for M2 videotape and DLT3 tape 
for more than fourteen years is analyzed. Gas chromatography (GC) and gel permeation 
chromatography (GPC) are used to analyze chemical changes of lubricant, fatty acid ester, 
and binder, polyester-polyurethane. The kinetics of hydrolysis of the fatty acid ester can 
be described by two first-order reactions. One is estimated to be corresponding to the 
hydrolysis of fatty acid ester on the surface of the magnetic layer, and the other to the 
fatty acid ester dissolved in the binder of magnetic layer. The hydrolysis of 
polyester-polyurethane (PU) can also be described by a first-order reaction. A durability 
test reveals that this MP tape keeps its good performance after long-term storage. A 
magnetization decrease of about twelve percent is observed after saving for fourteen 
years. This small decrease does not affect the above mentioned good performance. 
 
1   Introduction 
 MP tape has been widely used in the fields of mass storage, broadcast, etc. In these 
fields, storage stability of MP tape is very important together with recording density. For 
development of MP media excellent in storage stability, it is necessary to know the 
problems in long-term storage. The claims during the use were investigated, and it 
became clear that many of them were due to the hydrolysis of the fatty acid ester as 
lubricant and the PU as binder.  
 As the first step of estimation of life expectancy of media, it was decided to study 
chemical changes of organic materials of MP formulation tape that has been used for M2 
videotape and DLT3 tape for more than fourteen years. In addition, the magnetic 
properties and other physical characteristics were investigated and the durability was 
tested.  
 
2   Experimental 
 The MP tapes for M2 stored in a laboratory for more than fourteen years were analyzed. 
Two types of fatty acid ester are contained as lubricants in the tape. One fatty acid ester is 
buthoxyethoxyethoxy stearate (BE2S) and the other is isoamyl stearate (AS). They were 
extracted with n-hexane from the tape and were quantified by GC (Shimadzu GC-17A). 
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Analysis of binder was also performed. Polyvinyl chloride and PU are contained as 
binder in the tape and they are crosslinked by hardener. PU used in a magnetic layer of 
this tape consists of methanediphenyl diisocyanate, hydroxycaproic acid, neopentyl 
glycol and phthalic acid. The magnetic layer was removed mechanically from magnetic 
tape and the soluble components were extracted with tetrahydrofuran. The extracts were 
analyzed by GPC (Toso HPLC8020) with an ultraviolet detector. Polyvinyl chloride 
shows no absorption in the ultraviolet region and only PU can be quantified. 
 
3   Results and Discussion   
3.1 Fatty acid ester    
 It was reported that lubricant loss in short term accelerating conditions is due to 
degradation and vaporization[1][2]. In our study, the decay of lubricant in long-term 
natural storage was investigated from a viewpoint of hydrolysis. It is known that the 
hydrolysis reaction of ester is first-order to ester concentration if enough water exists. 
The amount of fatty acid ester which remains in the tape and can be extracted with 
n-hexane is shown in Fig.1 and the decay rate constant of fatty acid ester is shown in 
Fig.2 and Tab.1.  
The decay reactions of the two fatty acid esters are expressed as two first-order reactions 
of two steps in which each reaction rate differs. The ratio of reaction rate of BE2S to that 
of AS is shown in Tab.2. In the first step, although AS is smaller and more volatile than  
 

 
 
BE2S, the decay loss reaction rate of BE2S is about 3.6 times of that of AS. This ratio of 
reaction rate is approximately equal to the ratio of hydrolysis reaction rate of fatty acid 
esters measured in acetone containing a small amount of HCl. Therefore it is considered 
that hydrolysis reaction is dominant in the first step. In the second step , the reaction rate 
of BE2S is about 1/6 of the first one and the difference of reaction rate of BE2S and AS 
is small, so vaporization is considered to be involved. It is assumed that the first decay  

Fig.2 Reaction rate of Fatty Acid Ester
C0;initial amount
C0-X;remaining amount
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Fig.1  Decay of Fatty Acid Ester
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 /year /sec 
BE2S (1st) 2.9E-01 9.3E-09 
BE2S (2nd) 4.3E-02 1.3E-09 
AS (1st) 8.2E-02 2.6E-09 
AS (2nd) 3.9E-02 1.2E-09 
 

Table 1.  The Decay Rate Constant of Fatty Acid Esters 
 
 

1st 2nd In acetone solution made weakly acidic with HCl 
3.6 1.1 3.1 

 
Table 2.  The Decay Rate Ratio of BE2S/AS 

 
comes from the fatty acid ester on the magnetic layer surface and the subsequent slow 
decay comes from the fatty acid ester dissolved in the magnetic layer binder. The 
thickness of the fatty acid ester layer on the surface is calculated to be about 0.7 
nanometers from the quantity lost at the first step reaction and the surface area of the tape 
measured by gas-adsorption method. The concentration of the fatty acid ester dissolved in 
the magnetic layer binder is also calculated to be about 3 wt%, and is equal to the 
concentration at which binder films become opaque when the varying amount of fatty 
acid ester is added.  
                 
3.2  Polyester-polyurethane 
 
 
 
 

/year /sec 
1.4E-03 4.3E-11 

 
Table 3.  The Decay Rate of Polyester Polyurethane 

 
 
 Though hydrolysis of PU of magnetic tapes had been reported [3][4], PU of MP tape in 
long-term natural storage was not yet investigated. We attempted to obtain the reaction 
rate of hydrolysis of PU using the ratio of the soluble component to PU content and the 
number average molecular weight of soluble PU. If one ester linkage of polymer is 
broken by hydrolysis, the number of PU molecules increases by one[5]. In order to find 
the hydrolysis reaction rate, the reciprocal of number average molecular weight was used  
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Fig.3 Molecule Number of Soluble PU
 extracted from magnetic layer 1g
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as the number of soluble PU molecules. The number of soluble PU molecules is shown in 
Fig.3. The number of soluble PU molecules increased remarkably after about 2 years, and 
hydrolysis reaction was considered to become predominant. Hydrolysis reaction rate was 
calculated using the increase of the number of molecules, as a first-order reaction shown 
in Fig.4 and Tab.3. The hydrolysis reaction of PU is extremely slow when compared to 
the hydrolysis of fatty acid ester in this magnetic tape. The reason is considered to be 
because PU is a high polymer and is crosslinked by hardener.  
 
3.3  Physical characteristics and Durability test 
 Physical properties and video output level of a new tape and the tape stored for 14 years 
were measured and were compared in Tab.4. A 1-minute length x 1,000 passes running 
test using an M2 VCR was also performed as a durability test. Though remanence 
magnetization loss was about 12 % after 14 years, the decrease of video output level was 
0.6 dB and was acceptable in practical use. The glass transition temperature of the 
magnetic layer did not change. The friction coefficient of the magnetic surface increased 
slightly but kept at a low value. After running for 1,000 passes as the durability test, the 
slight debris on the video heads was observed. But there was no difference between these 
two tapes in the amount of debris. These tests reveal that this MP tape keeps its good 
performance after long-term storage. 
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Storage Time (years) 0 14 Test Method 
Magnetic Properties    

Br (Gauss) 2,640 2,320 VSM 
Mechanical Properties    

Glass transition temperature of magnetic 
layer (degree at Celsius) 

82 82 Dynamic 
viscoelastometer 

Friction coefficient of magnetic surface 0.22 0.31 Vs. Stainless bar 
Electro Magnetic Conversion Properties    

Video output (dB) 0 -0.6 M2 VCR 
 

Table 4.  Changes of Properties of MP Tape after Long-Term Storage 
 
4   Conclusions 
 The physical characteristics and the chemical changes of the MP tape over 14 years 
were pursued, and the storage stability of the MP tape was proved to be satisfactory.  
The hydrolysis reactions of lubricant and binder in the MP tape could be expressed as 
first-order reactions, and the reaction rates were calculated. It becomes possible to make a 
quantitative comparison between the changes in the natural storage conditions and those 
in the accelerating tests. The thickness of surface fatty acid ester of the magnetic layer 
and the concentration of fatty acid ester dissolved in the binder can be estimated. 
Usually,these are very difficult to quantify by other techniques such as ESCA or AES 
because fatty acid esters are volatile and have no special element except carbon, 
hydrogen and oxygen in common as magnetic layer binder elements[6].   
 The accelerating conditions which can be used to simulate more precisely the passage of 
long time on the basis of these data will be established and be applied for the 
development of new media. 
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Abstract 
Storage systems have storage devices which run real time embedded software.  Most 
storage devices use C and occasionally C++ to manage and control the storage device.  
Software for the storage device must meet the time and resource constraints of the storage 
device.  The prevailing wisdom in the embedded world is that objects and in particular 
Java only work for simple problems and can not handle REAL problems, are too slow 
and can not handle time critical processing and are too big and can’t fit in memory 
constrained systems. 
 
Even though Java's roots are in the embedded application area, Java is more widely used 
in the desktop and enterprise environment.  Use of Java in embedded real time 
environments where performance and size constraints rule is much less common.   
 
Java vendors offer a dizzying array of options, products and choices for real time storage 
applications.  Four main themes emerge when using Java in a real time storage 
application; compiling Java, executing Java with a software Java Virtual Machine (JVM), 
executing Java with a hardware JVM and replacing a real time operating system (RTOS) 
with a JVM. 
 
The desktop and enterprise environment traditionally run Java using a software JVM that 
has been ported to a particular platform.  The JVM runs as a task or process hosted by the 
platform operating system.  With the performance and memory available on most 
workstations and personal computers, running an application on a software JVM is not an 
issue. However, many desktop and enterprise applications are not faced with the critical 
time and space constraints of an embedded application.  Because of these constraints, 
running an embedded application on a software JVM incurs the additional overhead of 
software running software.  Although it might be possible to run some embedded 
applications on a software JVM because of the tremendous speed of some processors, for 
most embedded applications, this configuration will not met timing or space constraints. 
 
For a real-time storage application, running a JVM in software is typically only used for 
tasks which are not time critical.  Typical tasks include hardware configuration, 



318 

maintenance and diagnostics, or upgrading or loading new code.  For these tasks, a 
software JVM can meet the performance and space requirements.  The software JVM 
typically runs as a low priority task.  Other time critical tasks are written in C or C++ and 
do not use the intermediary JVM. 
 
Compiled Java is an acceptable option since the JVM is eliminated and the functionality 
of the JVM such as garbage collection is wrapped into a set of runtime libraries.  
Compiling Java gives you the benefit of an object-oriented language without the 
performance penalty of an interpreted language. 
 
The ultimate in speed and performance is attained when the JVM is cast in silicon.  
Several hardware vendors are planning or currently offering coprocessors or custom 
chips that execute Java directly in hardware.  
 
Since the JVM provides the runtime environment for Java, in essence an operating 
system, one interesting approach is to use the JVM as a replacement for a RTOS. 
  
This paper discusses the advantages and disadvantages of each approach as well as 
specific experiences of  using Java in a commercial tape drive project. 
 
1 Why Java for Real Time Storage Systems? 
Java is an object-oriented language which gives you all the advantages of object 
technology, including faster delivery to market, more maintainable code, and easier 
adaptation to change.  Java enforces the discipline of object design.  Using Java in an 
embedded environment presents several challenges.  Embedded applications have both 
functional and timing requirements and run in resource constrained environments.  Java 
must meet the performance and space requirements of the embedded application.  Some 
questions to answer include: 
 

• Space the final frontier, will the JVM and class libraries fit? 
• Performance, can the JVM run fast enough to meet hard real time deadlines? 
• Scheduling, is the JVM deterministic and can non-deterministic tasks, such as 

garbage collection be scheduled? 
 
2 Java Basics 
Java is both a language and an environment which supports compilation and execution of 
the language.   
 
Java, the language, supports single inheritance, polymorphism and other object concepts. 
Java is compiled to an intermediate language, Java byte codes, the assembly language for 
the JVM.  The output of the Java compiler is a class file, which contains the Java 
bytecodes. 
 
Java, the environment, is a virtual machine that has been ported to many operating 
systems and processors.  The JVM interprets and executes the Java bytecodes and is 
usually written in C or C++.   The JVM loads the Java class with a class loader, links the 
class files, verifies the bytes in a class file for correctness, prepares the class files for 
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execution, initializes the class, resolves method references and determines when to 
garbage collect unused classes.  A typical Java environment is shown in Figure 1. 
 
 
 
 
 

Figure 1 - Java Runtime Environment 

3 Flavors or Java for Embedded Systems 
There are four flavors of Java for embedded systems: 

• Software Java Virtual Machine 
• Compiled Java  
• Hardware Java Virtual Machine 
• Java as a Real Time Operating System 
 

3.1 Software Java Virtual Machine 
A software JVM is an application, process or task that typically is hosted by another 
operating system.  Software JVMs are typically used for desktop or enterprise 
applications.  Most desktop applications execute Java using a JVM running as a process 
or task on the desktop.  Browsers execute Java with a JVM in the browser.  This is the 
classic use of Java. 
 
Since Java is interpreted by another program, the software JVM, there is a concern about 
the performance of the application which the JVM is executing.  In particular, embedded 
applications must execute within specific time frames.  Executing the embedded 
application on the JVM which itself is being executed raises the question of how fast the 
embedded application is executing and whether it can meet its required deadlines.  One 
might speculate that there may exist embedded applications which given enough 
hardware horsepower will meet their required deadlines with a software JVM. 
 
For those embedded applications which rely on and use a RTOS, a software JVM could 
be executed as a set of tasks or processes on the RTOS.  Assuming the JVM tasks have a 
sufficient priority, some non real-time or slow real time embedded application tasks 
could be run using a software JVM such as: 

• Hardware configuration 
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Java Virtual Machine 

Operating System 

Hardware 
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• Maintenance and diagnostics 
• Code upgrades and loads  

This method of executing Java is typical for desktop and enterprise applications where 
performance, although a concern, is not a driving factor.  An example of this flavor of 
Java is WindRiver® Personal JWorks™ [1]. 
 
3.1.1 WindRiver® Personal JWorks™ 
As shown in Figure 2, Personal JWorks includes the PersonalJava Core Libraries, the 
JVM, the VxWorks Real Time Operating System (RTOS), the Supporting Native 
Libraries, a board support package (BSP) and device drivers for the particular processor 
and RTOS. 
 
The PersonalJava Core Libraries include the applet, awt, beans, io, lang, math, net, rmi, 
security, sql, text and utl packages.  The Personal JWorks application environment is 
based on the Java Development Kit 1.1.8 and adds security as specified in the Java 2 
Software Development Kit, version 1.2. 
 
Personal JWorks supports and fully implements the Abstract Windowing Toolkit 
(AWT) and fully supports the Java AWT graphics system.  The WindRiver Media 
Library (WindML) glues the Personal JWorks environment to an applications graphics 
hardware.  WindML supports 2D graphics primitives, fonts and provides audio and video 
support. 
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Personal JWorks uses a software JVM that runs as a set of tasks on VxWorks®.  Using 
the Java Native Interface (JNI), JVM services such as thread and memory management 
(garbage collection), synchronization mechanisms, networking and graphics are mapped 
to VxWorks tasks through the Supporting Native Libraries.  As a result, the VxWorks 
scheduler is able to prioritize and preempt the Java threads in the  

Figure 2- Personal JWorks™ Architecture 

 
same way as it does VxWorks tasks. Although Personal JWorks does not provide real-
time response, any VxWorks native task placed at a higher priority than a Java thread will 
execute without impact.  Personal JWorks thus retains the determinism of VxWorks®.  
Using the JNI, Personal JWorks applications can access any C/C++ function in the 
VxWorks operating system including system calls. 
 
3.2 Compiled Java 
Compiled Java removes the environment portion of Java and treats Java as a language.  
Java is simply compiled to either native code or to an intermediate language such as C or 
C++.   Compiled Java provides the benefit of an object-oriented language without the 
performance penalty of an interpreted language.  Garbage collection and other JVM 
services are implemented through runtime libraries. Two examples of compiled Java are 
the Gnu Compiler for Java and WindRiver® Diab™ FastJ®. 
 
3.2.1 Gnu Compiler for Java™(gcj) 
Java applications are compiled and linked with the gcj runtime library, libgcj.  The libgcj 
supplies the core classes, the garbage collector and the bytecode interpreter.  The libgcj 
must be ported to the processor in your environment.  The gcj allows three types of 
compiling: 
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• Java source code to native machine code 
• Java source code to Java bytecode 
• Java bytecode to native machine code 
 

3.2.2 WindRiver® Diab™ FastJ® 
FastJ compiles C, C++ and Java source code to native machine code.  As shown in 
Figure 3, the FastJ compiler compiles, optimizes and generates assembly code for the 
desired target CPU and runtime environment using the Global Optimizer, Code Selector 
and Code Generator.  External assembly source code and external libraries may be 
assembled and linked with the C, C++ and Java code. To reduce code size only needed 
core libraries may be configured.  The Assembler together with the Linker produce an 
ELF format executable image for the desired processor.  
 
FastJ supports three memory management options: 

• Explicit memory management, similar to C/C++, eliminates garbage 
collection. 

• Standard, non-incremental garbage collection, runs when memory is low or 
explicitly called. 

• Preemptive, incremental garbage collection, runs as a preemptable, low 
priority background task. 

Figure 3 - FastJ® Compiler Architecture 
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3.3 Hardware JVM 
The ultimate in performance is achieved by executing or running the JVM in hardware.   
The JVM is implemented in silicon as either a co-processor or separate processor on a 
custom chip.  Specially designed or custom hardware is required which directly executes 
the Java bytecodes.  This is similar to assembly code being executed on a particular 
processor.  Several chip vendors including ARM from England, Ajile from the United 
States, Vulcan Machines LTD from England and NTT Docomo from Japan offer 
hardware JVMs. [2] 

Several variations of the hardware theme are currently available.  Some hardware 
implementations use a co-processor to execute Java bytecodes.  Other implementations 
use specialized hardware, which is called when Java bytecodes are detected.  An example 
of a hardware JVM is the ARM® Jazelle™[3]. 
 
3.3.1 ARM® Jazelle™ 
Jazelle is a product from ARM®, which includes a hardware JVM for the ARM® 
family of processors and a runtime environment to support Java applications.  The 
Jazelle runtime architecture, as shown in Figure 4, allows Java applications to access 
the Java Class libraries available in the particular Java development kit, either the Java 2 
Enterprise, Standard or Micro Edition.  Each edition of Java has a virtual machine which 
executes the Java bytecodes.  Jazelle currently supports the pJava, KVM and CVM 
virtual machines. Jazelle provides a Java Technology Enabling Kit for porting other 
VM’s.   
 
The Jazelle Supporting Code replaces the Java virtual machine interpreter loop and 
enables execution of the Java bytecodes directly in hardware.  A condition bit in a new 
ARM instruction  puts the processor in the Java state.  The processor then executes the 
Java byte code directly in hardware.  Jazelle supports execution of both Java bytecodes 
and ARM® machine codes.  This allows existing application written in C and C++ to 
continue to execute alongside the Java applications.  The main difference between a 
software JVM such as Personal JWorks and a hardware JVM such as Jazelle is how 
the Java bytecodes are executed.  In Personal JWorks, the bytecodes are translated to 
native machine code and then executed.  With Jazelle, the bytecodes are executed 
directly in hardware. 
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Since the JVM must be supported by the underlying RTOS, Jazelle also supports 
WindowsCE, SymbianOS, PalmOS, Linux and many real time and proprietary operating 
systems. 

 

Figure 4 - Jazelle™ Run-Time Architecture 
 
3.4 Java as a Real Time Operating System 
An interesting variation is viewing the JVM as an operating system.  The JVM is the 
RTOS.  Since the JVM is essentially a machine, simulated or executed on another 
machine, it makes sense to eliminate the other machine and execute the JVM directly on 
hardware.  An example of this is Jbed™ from Esmertec [4]. 
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3.4.1 Esmertec ™ 
Jbed combines the JVM and a real time operating system into a single entity. Jbed 
has a four layer architecture.  The Java applications have access to lang, io, util as well as 
the connection framework in the javax.microedition package and is PersonalJava 3.0 
(JDK 1.1) compliant.  As shown in Figure 5, Jbed supports many of the popular  

Figure 5 - Jbed™ Run-Time Architecture 
 
Internet protocols such as HTTP, TFTP, TCP/IP, PPP and UDP.  JVM services such as 
garbage collection (GC) are supported without the intermediary JVM.  Jbed does not 
execute or interpret Java bytecode.  Instead, bytecode is translated into fast machine code 
prior to downloading or upon class loading with the Way Ahead of Time compiler and 
the Target Bytecode Compiler (TBCC).  This avoids the speed and size penalty of a 
JVM, yet stills provides advanced Java features such as dynamic code loading and 
automatic garbage collection.  Jbed extends the Java thread package to provide priority 
based scheduling using the earliest deadline first algorithm.  A device driver support 
package supports driver development in Java.  Thus, the entire application including 
device drivers can be written in Java.  
 
4 On the Road to Java 
The 9840 and 9940 family of StorageTek tape drives use an ARM7® 32 bit processor, 
with 2-4MB of RAM for loading the code image. A 32MB - 64MB data buffer is used for 
data transfer and the drives support the SCSI, ESCON, and Fibre Channel interfaces.   
Specialized Application Specific Integrated Circuits (ASICs) are used to control the tape 
drive.  All of the code is written in C with Vertex serving as the RTOS. 
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C++ and object design have been introduced into the time critical tape microcode.   
Initially, the classes have been written in C++ and are mirrored in Java for unit testing.  
The Java classes form the basis for a hardware simulator. 
 
Since FastJ™ is similar to current development environment, FastJ™ will be the first 
step to introducing Java in our real time system.  It is the least disruptive and does not 
require hardware changes. FastJ will be used to compile the Java classes used in the 
hardware simulator and tape microcode.  Since the current RTOS is old, the next step will 
be to investigate Jbed™ which is a Java RTOS, a combination of hardware/software.  
Finally, since Jazelle™ requires hardware changes, the last step will be Jazelle™. 
 
5 Summary 
Recently, there has been a resurgence in the use of Java for embedded systems.  Options 
ranging from software Java Virtual Machines offered by real time operating system 
vendors to chip vendors developing Java chips are available to the embedded storage 
developer.  Java will be used in the next generation Personal Digital Assistants (PDA), 
such as the Palm Pilot, and in the next generation of mobile phones. 
 
We believe that Java has now become a viable option for building real-time storage 
applications.  Issues involving the space, performance and scheduling problems of Java 
for embedded systems are being solved.  Almost daily, a new vendor or company 
announces its plan for Java in the embedded environment.  With the many options 
available, at least one flavor of embedded Java will work for your application. 
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Abstract 
This paper will discuss the new technologies used in the DIR-2000, 1 Gbit/sec data 
recorder: the highest performance in the commercial market.  It will briefly explain how 
the DIR-2000 is implemented in VERA Program [1] of National Astronomical 
Observatory in Japan. 
 
1 Introduction 
More than 1000 units of Sony DIR-1000 Series [2] data recorders are being used for the 
varieties of applications among government and scientific communities worldwide.  
Responding to the request of a higher data rate than 512 Mbit/sec, Sony developed the 
DIR-2000 that offers the highest data rate of 1 Gbit/sec.  The data capacity on 19mm 
metal particle tape is 600 GB and the recording time per cassette tape is 80 minutes at the 
data rate of 1 Gbit/sec. 
 
2 New Format 
Since 1990, ANSI ID-1 19 mm Format has been well accepted as the high performance 
and reliable format by variety of data recorder communities, and there are many ID-1 
users worldwide.  However, the data capacity per tape of 100 GB for ID-1 is not enough 
for a 1 Gbit/sec recorder, since the recording time would be only 13 minutes.   
 
Sony is preparing to propose a new 19 mm format in ANSI Committee for 
standardization.  The new format of 19 mm is not only suitable for data recording of 
high performance and high reliability demanded in 21st century, but also for read 
compatibility of ID-1 tape and similar interface and control on ID-1 drives.  The 
specifications and parameters of the DIR-2000/new format are shown in terms of the 
comparison with the DIR-1000H / ID-1 Format in Table 1. 
 
The dimensions of the DIR-2000 are the same as those of the DIR-1000 Series, so that 
they can be installed in the existing Sony’ Mass Storage System such as PetaSite 
DMS-8800 and the DMS-24.  
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   DIR-1000H    DIR-2000                
Format    ANSI ID-1 Format  New Format.              
___________________________________________ID-1 Read Compatible       
Data Rates   512, 400, 256 Mbit/sec  1024, 512, 256 Mbit/sec     
Data Capacity/Tape  100 GBytes   600 GBytes               
Recording Time   25 minutes at 512 Mbps  80 minutes at 1024 Mbps    
 
Media     Co-oxide    New Metal Particle   
Tape Width   19 mm    19 mm     
Tape Thickness    16 μm   11 μm    
Coercive Force (Hc)  900 Oe    2300 Oe    
 
Shortest wavelength  0.89 μm    0.45 μm                 
Track Pitch     45 μm    19 μm                     
Maximum Tape Speed  847.5 mm/sec   356.6 mm/sec                
Recording Bit Rate/Head  88 Mbps   88 Mbps                     
Record / Playback Heads  16 heads/16 heads  32 heads/32 heads           
Processor Channels  8 channels   16 channels                 
Maximum Writing Speed  39.5 meter/sec    19.7 meter/sec              
Scanner Rotation Speed  110 rps  at 512 Mbps  55 rps at 1024 Mbps           
Data Interface    ECL Parallel with clock     
Control Interface   RS-422/IEEE-488GPIB/RS-232C    
Dimensions (W x H x D)   436 x 432.5 x 633.5 mm                      
         (17 1/4 x 17 1/8 x 25 1/8 inches)                 
Weight    64 Kg (141 lb 1 oz)  70 Kg (154 lb 5 oz)         
Power Requirement     100 V to 240 V AC ±10% (50/60 Hz)            
Power Consumption  800 VA   850 VA                      
 
   Table 1. Specifications and Parameters 
 
3 New Technologies 
In order to meet the requirements of high data rate, high data capacity, long head life, 
less tape damage, and backward compatibility all together, new heads and new tapes 
were developed and implemented in new recorders. 
 
3-1 Ferrite Cover over Heads and ETF Record Heads  
There are 32 record heads and 32 playback heads: the total of 64 heads on the scanner of 
the DIR-2000!  Since the spacing between a record head and playback head is small, the 
cross feed signal from record heads to playback heads would be significant during 
read-after-write that is an essential function for reliable data recording. 
 
We introduced patented ferrite covers over record and playback heads to shield the 
magnetic flux.  This simple idea of shielding is very effective and improves the cross 
feed by 12 dB. 
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The newly developed the ETF (Embedded Thin Film) head has small magnetic core 
compare with the conventional MIG (Metal In Gap) head, so that the magnetic leakage 
flux from record head is improved further by 7 dB. 
 
3-2 Laminated Amorphous Playback Heads and New Metal Tape 
The shortest wavelength becomes one half of ID-1 (0.45μm vs. 0.89μm), and the track 
pitch becomes less than one half of ID-1 (19μm vs. 45μm).  In spite of these 
reductions, the combination of the laminated amorphous playback heads and newly 
developed metal particle tape provide even better C/N than ID-1 recorder.  This could 
be achieved by the joint R & D of heads/drums, drives, and media in Sony.   
 
3-3 Trench Design Heads   
There are two trenches on record and playback heads of the DIR-2000.  This patented 
head design provides better head-tape contact with lower head projection, larger head 
contour, and lower tape tension.  These result in longer head life and less tape damage.  
Backward compatibility of format requires playback of tapes of different thickness.  
Trench design heads provide a good head-tape contact for different kinds of tape 
thickness throughout head life.      
 
The same technologies of trench ETF/amorphous heads and new metal tapes are used in 
Sony Computer Tape Drive DTF-2 (24 Mbytes/sec via SCSI or Fiber Channel) that are 
installed as a few hundred TB Systems at NASDA and ERSDAC in Japan. 
 
4 Applications 
The first application for the DIR-2000 was VERA Project of National Astronomical 
Observatory in Japan.  VERA stands for VLBI (Very Long Baseline Interferometer) 
Exploration of Ratio Astronomy.  VERA array consists of four telescopes whose 
diameter is 20 meters (67 feet).  The combination of these telescopes can obtain the 
resolution power of a telescope whose diameter is 2000km (1250 miles). 
 
The DIR-2000 1 Gbit/sec recorder is one of the key devices for VERA Project.  One 
DIR-2000 drive is used to record the data at each of four VERA telescope stations.  The 
correlator at National Astronomical Observatory in Tokyo supports four tape drives of 
the DIR-2000 to analyze the data from four telescope stations. 
 
The DIR-2000’s are installed in the DMS-24, Mass Storage System for automated 
operations for data acquisition at the telescope stations and correlation in Tokyo.  The 
DMS-24 library can handle up to 24 large cassette tapes (14.4 TB capacity) and two 
drives of the DIR-2000’s.   
 
Besides VERA Project, a government agency in Japan plans to develop 2.5 Gbit/sec 
ATM network, and is considering using the DIR-2000 to record the data on the 
broadband network.  Broadband network is one of the important technologies in 21st 
century, and recording of high-speed un-interrupted data will be needed.   
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5 Conclusions 
Sony has developed the DIR-2000: 1 Gbit/sec data recorder with 600 GB data capacity 
per tape.  The DIR-2000 meets the requirement for recording of un-interrupting data at 
very high data rate.  The applications for this recorder are not only scientific researches 
but also broadband radar and network.   
 
The DIR-2000 will be demonstrated at Vendor Exhibit Area.      
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